Export 7 results:
Sort by: Author Title Type [ Year  (Desc)]
Ziegler, LB, Constable CG.  2015.  Testing the geocentric axial dipole hypothesis using regional paleomagnetic intensity records from 0 to 300 ka. Earth and Planetary Science Letters. 423:48-56.   10.1016/j.epsl.2015.04.022   AbstractWebsite

Absolute and relative geomagnetic paleointensity records reveal variations in geomagnetic dipole strength, either via averaging time series of virtual axial dipole moments, or through formal inversion strategies like the penalized maximum likelihood (PML) method used for the PADM2M (Paleomagnetic Axial Dipole Moment for 0-2 Ma) model. However, departures from the most basic geocentric axial dipole (GAD) structure are obvious on centennial to millennial time scales, and paleomagnetic records from igneous rocks suggest small deviations persist on million year time scales. Spatial variations in heat flow at the core-mantle boundary (inferred from large low shear velocity provinces, LLSVPs) are widely suspected to influence both the average geomagnetic field and its regional secular variation. Long term departures from a GAD configuration should be visible from regional differences in paleointensity reconstructions. We use a PML method to construct time-varying models of regional axial dipole moment (RADMs) from a combined set of absolute and relative palebintensity data, and compare results from the last 300 kyr. RADMs are created from sediment records selected from specific latitude and longitude bands. We also test whether grouping records lying above each of the 2 major LLSVPs (centered on Africa and the Pacific) produce RADMs that are distinct from those above regions lacking anomalous seismic structure. Systematic differences appear in the various regional results. In the most recent part of the record regional differences are broadly similar to the Holocene, CALS10k.1b, time-varying geomagnetic field model spanning 0-10 ka. However, lack of Southern hemisphere records prevents direct confirmation of the hemispheric asymmetry present in CALS10k.1b in both average virtual axial dipole moment and its variability. As expected, the 300 kyr RADMs exhibit greater overall temporal field variability than is seen over 0-10 ka. Average RADM is higher in the Pacific and in Equatorial regions than in the Atlantic and in mid-high latitude northern hemisphere regions. Higher average RADMs are associated with lower overall field variability and less pronounced excursional signatures. Notably, the lower variability in the Pacific sector seen here (defined by either longitude band or LLSVP location) suggests that the modern low paleosecular variation there extends over at least the past few hundred thousand years. RADMs identified with LLSVPs show systematic deviations from the non-LLSVP group of records, with distinct characteristics for the African and Pacific provinces. The African LLSVP generates more pronounced RADM minima associated with geomagnetic excursions, and in general paleointensity decreases associated with excursions occur first in the Atlantic longitude sector and over the African LLSVP. (C) 2015 Elsevier B.V. All rights reserved.

Buffett, BA, Ziegler L, Constable CG.  2013.  A stochastic model for palaeomagnetic field variations. Geophysical Journal International. 195:86-97.   10.1093/gji/ggt218   AbstractWebsite

Regeneration of the Earth's magnetic field by convection in the liquid core produces a broad spectrum of time variation. Relative palaeointensity measurements in marine sediments provide a detailed record over the past 2 Myr, but an explicit reconstruction of the underlying dynamics is not feasible. A more practical alternative is to construct a stochastic model from estimates of the virtual axial dipole moment. The deterministic part of the model (drift term) describes time-averaged behaviour, whereas the random part (diffusion term) characterizes complex interactions over convective timescales. We recover estimates of the drift and diffusion terms from the SINT2000 model of Valet et al. and the PADM2M model of Ziegler et al. The results are used in numerical solutions of the Fokker-Planck equation to predict statistical properties of the palaeomagnetic field, including the average rates of magnetic reversals and excursions. A physical interpretation of the stochastic model suggests that the timescale for adjustments in the axial dipole moment is set by the dipole decay time tau(d). We obtain tau(d) = 29 kyr from the stochastic models, which falls within the expected range for the Earth's core. We also predict the amplitude of convective fluctuations in the core, and establish a physical connection to the rates of magnetic reversals and excursions. Chrons lasting longer than 10 Myr are unlikely under present-day conditions. However, long chrons become more likely if the diffusion term is reduced by a factor of 2. Such a change is accomplished by reducing the velocity fluctuations in the core by a factor of root 2, which could be attributed to a shift in the spatial pattern of heat flux from the core or a reduction in the total core heat flow.

Amit, H, Korte M, Aubert J, Constable C, Hulot G.  2011.  The time-dependence of intense archeomagnetic flux patches. Journal of Geophysical Research-Solid Earth. 116   10.1029/2011jb008538   AbstractWebsite

The long-term temporal behavior of intense geomagnetic flux patches at the core-mantle boundary and the relation with lower mantle lateral heterogeneity are under debate. We apply an algorithm to detect centers of intense flux patches and track their time-evolution in a recent archeomagnetic field model in order to study the kinematics of such intense magnetic flux patches on millennial timescale. We find that most intense flux patches appear near the edge of the tangent cylinder. Quasi-stationary periods with small oscillations of patches occur more than drifts. Detailed comparison of the archeomagnetic patches' behavior with that seen in numerical dynamos with tomographic heat flux boundary conditions suggests that core-mantle thermal coupling could be the cause of a statistical preference for some longitudes on the long term, which does not exclude significant time spent away from the preferred longitudes. This could explain the roughly coincident locations of high-latitude patches in the historical geomagnetic field with that of the time-average paleomagnetic field together with the much weaker patches intensity in the latter. Alternating eastward and westward drifts are also observed. The drifts are more westward than eastward, especially in the southern hemisphere, indicating that the time-average zonal core flow may also be driven by core-mantle thermal coupling. An average patch lifetime of similar to 300 years is found, which we hypothesize may indicate the vortex lifetime in the outer core.

Constable, CG.  2011.  Modelling the geomagnetic field from syntheses of paleomagnetic data. Physics of the Earth and Planetary Interiors. 187:109-117.   10.1016/j.pepi.2011.05.004   AbstractWebsite

This review examines results from time-varying geomagnetic field models that span several thousand years, and from variations in dipole moment strength up to million year time scales. For the past 400 years, twin magnetic flux lobes bordering the inner core tangent cylinder in both northern and southern hemispheres dominate the geomagnetic field and appear more or less fixed in location. In contrast, the millennial scale view shows that such features are quite mobile and subject to morphological changes on time scales of a few centuries to a thousand years, possibly reflecting large scale reorganization of core flow. The lobes rarely venture into the Pacific hemisphere, and average fields over various time scales generally reveal two or three sets of lobes, of diminished amplitude. Thus millennial scale models are suggestive of thermal core-mantle coupling generating a weak bias in the average field rather than a strong inhibition of large scale field changes. The recovery of variations in dipole moment on million year time scales allows frequency domain analyses to search for characteristic time scales for core dynamics that might be associated with excursion and reversal rate, time taken for reversals, or any signs of control by Earth's orbital parameters. The spectrum is characteristically red for the time interval 0-160 Ma, suggesting non-stationarity associated with average reversal rate changes, probably reflecting the impact of superchrons and a continually evolving core. Distinct regimes of power law decay with frequency may reflect different physical processes contributing to the secular variation. Evidence for non-stationarity at shorter time-scales is also present in dipole moment variations over 0-2 Ma with average growth rate faster than the decay process. Rates of change of dipole moment and rapid local field variations found in the paleomagnetic record are evaluated in the context of the 400 year historical record and the spectrum of geomagnetic variations for 0-160 Ma. (C) 2011 Elsevier B.V. All rights reserved.

Hulot, G, Finlay CC, Constable CG, Olsen N, Mandea M.  2010.  The Magnetic Field of Planet Earth. Space Science Reviews. 152:159-222.   10.1007/s11214-010-9644-0   AbstractWebsite

The magnetic field of the Earth is by far the best documented magnetic field of all known planets. Considerable progress has been made in our understanding of its characteristics and properties, thanks to the convergence of many different approaches and to the remarkable fact that surface rocks have quietly recorded much of its history. The usefulness of magnetic field charts for navigation and the dedication of a few individuals have also led to the patient construction of some of the longest series of quantitative observations in the history of science. More recently even more systematic observations have been made possible from space, leading to the possibility of observing the Earth's magnetic field in much more details than was previously possible. The progressive increase in computer power was also crucial, leading to advanced ways of handling and analyzing this considerable corpus of data. This possibility, together with the recent development of numerical simulations, has led to the development of a very active field in Earth science. In this paper, we make an attempt to provide an overview of where the scientific community currently stands in terms of observing, interpreting and understanding the past and present behavior of the so-called main magnetic field produced within the Earth's core. The various types of data are introduced and their specific properties explained. The way those data can be used to derive the time evolution of the core field, when this is possible, or statistical information, when no other option is available, is next described. Special care is taken to explain how information derived from each type of data can be patched together into a consistent description of how the core field has been behaving in the past. Interpretations of this behavior, from the shortest (1 yr) to the longest (virtually the age of the Earth) time scales are finally reviewed, underlining the respective roles of the magnetohydodynamics at work in the core, and of the slow dynamic evolution of the planet as a whole.

Constable, C, Korte M.  2006.  Is Earth's magnetic field reversing? Earth and Planetary Science Letters. 246:1-16.   10.1016/j.epsl.2006.03.038   AbstractWebsite

Earth's dipole field has been diminishing in strength since the first systematic observations of field intensity were made in the mid nineteenth century. This has led to speculation that the geomagnetic field might now be in the early stages of a reversal. In the longer term context of paleomagnetic observations it is found that for the current reversal rate and expected statistical variability in polarity interval length an interval as long as the ongoing 0.78 Myr Brunhes polarity interval is to be expected with a probability of less than 0.15, and the preferred probability estimates range from 0.06 to 0.08. These rather low odds might be used to infer that the next reversal is overdue, but the assessment is limited by the statistical treatment of reversals as point processes. Recent paleofield observations combined with insights derived from field modeling and numerical geodynamo simulations suggest that a reversal is not imminent. The current value of the dipole moment remains high compared with the average throughout the ongoing 0.78 Myr Brunhes polarity interval; the present rate of change in Earth's dipole strength is not anomalous compared with rates of change for the past 7 kyr; furthermore there is evidence that the field has been stronger on average during the Brunhes than for the past 160 Ma, and that high average field values are associated with longer polarity chrons. There is no evidence from recent millennial scale time-varying paleofield models to indicate that the field is entering a polarity transition. Nevertheless, it remains a reasonable supposition that the magnetic field will eventually reverse even though the time scale is unpredictable. A more immediate concern is that ongoing secular variation in the magnetic field may be expected to moderate the current high dipole strength on centennial to millennial time scales: it would not be surprising if it dropped substantially, returning closer to the average without necessarily reversing. This could have important consequences for space weather, and also highlights the need for improved understanding of the impact of geomagnetic field strength on the production rates of cosmogenic isotopes that are used to estimate past solar variability. (c) 2006 Elsevier B.V. All rights reserved.

Korte, M, Constable C.  2003.  Continuous global geomagnetic field models for the past 3000 years. Physics of the Earth and Planetary Interiors. 140:73-89.   10.1016/j.pepi.2003.07.013   AbstractWebsite

Several global geomagnetic field models exist for recent decades, but due to limited data availability models for several centuries to millennia are rare. We present a continuous spherical harmonic model for almost 3 millennia from 1000 B.C. to 1800 A.D., based on a dataset of directional archaeo- and paleomagnetic data and axial dipole constraints. The model, named Continuous Archaeomagnetic and Lake Sediment Geomagnetic Model for the last 3k years (CALS3K.1), can be used to predict both the field and secular variation. Comparisons and tests with synthetic data lead to the conclusion that CALS3K.1 gives a good general, large-scale representation of the geomagnetic field, but lacks small-scale structure due to the limited resolution of the sparse dataset. In future applications the model can be used for comparisons with additional, new data for that time span. For better resolved regions, the agreement of data with CALS3K.1 will provide an idea about the general compatibility of the data with the field and secular variation in that region of the world. For poorly covered regions and time intervals we hope to iteratively improve the model by comparisons with and inclusion of new data. Animations and additional snapshot plots of model predictions as well as the model coefficients and a FORTRAN code to evaluate them for any time can be accessed under The whole package is also stored in the Earthref digital archive at (C) 2003 Elsevier B.V. All rights reserved.