Publications

Export 12 results:
Sort by: Author Title Type [ Year  (Desc)]
2019
Korte, M, Brown MC, Gunnarson SR, Nilsson A, Panovska S, Wardinski I, Constable CG.  2019.  Refining Holocene geochronologies using palaeomagnetic records. Quaternary Geochronology. 50:47-74.   10.1016/j.quageo.2018.11.004   AbstractWebsite

The aperiodic nature of geomagnetic field variations, both in intensity and direction, can aid in dating archaeological artefacts, volcanic rocks, and sediment records that carry a palaeomagnetic signal. The success of palaeomagnetic dating relies upon our knowledge of past field variations at specific locations. Regional archaeo- and palaeomagnetic reference curves and predictions from global geomagnetic field models provide our best description of field variations through the Holocene. State-of-the-art palaeomagnetic laboratory practices and accurate independent age controls are prerequisites for deriving reliable reference curves and models from archaeological, volcanic, and sedimentary palaeomagnetic data. In this review paper we give an overview of these prerequisites and the available reference curves and models, discuss techniques for palaeomagnetic dating, and outline its limitations. In particular, palaeomagnetic dating on its own cannot give unique results, but rather serves to refine or confirm ages obtained by other methods. Owing to the non-uniform character of magnetic field variations in different regions, care is required when choosing a palaeomagnetic dating curve, so that the distance between the dating curve and the record to be dated is not too large. Accurate reporting and incorporation of new, independently dated archaeo- and palaeomagnetic results into databases will help to improve reference curves and global models for all regions on Earth.

2018
Cromwell, G, Johnson CL, Tauxe L, Constable CG, Jarboe NA.  2018.  PSV10: A global data set for 0-10 Ma time-averaged field and paleosecular variation studies. Geochemistry Geophysics Geosystems. 19:1533-1558.   10.1002/2017gc007318   AbstractWebsite

Globally distributed paleomagnetic data from discrete volcanic sites have previously been used for statistical studies of paleosecular variation and the structure of the time-averaged field. We present a new data compilation, PSV10, selected from high-quality paleodirections recorded over the past 10 Ma and comprising 2,401 sites from 81 studies. We require the use of modern laboratory and processing methods, a minimum of four samples per site, and within-site Fisher precision parameter, k(w), 50. Studies that identify significant tectonic effects or explicitly target transitional field states are excluded, thereby reducing oversampling of transitional time intervals. Additionally, we apply two approaches using geological evidence to minimize effects of short-term serial correlation. PSV10 is suitable for use in new global geomagnetic and paleomagnetic studies as it has greatly improved spatial coverage of sites, especially at equatorial and high latitudes. VGP dispersion is latitudinally dependent, with substantially higher values in the Southern Hemisphere than at corresponding northern latitudes when no VGP cutoff is imposed. Average inclination anomalies for 10 degrees latitude bins range from about +32 degrees to -7.52 degrees for the entire data set, with the largest negative values occurring at equatorial and mid-northern latitudes. New 0-5 Ma TAF models (LN3 and LN3-SC) based on selections of normal polarity data from PSV10 indicate a Non-zonal variations in field structure are observed near the magnetic equator and in regions of increased radial flux at high latitudes over the Americas, the Indian Ocean, and Asia.

Korte, M, Constable CG.  2018.  Archeomagnetic intensity spikes: Global or regional geomagnetic field features? Frontiers in Earth Science. 6   10.3389/feart.2018.00017   AbstractWebsite

Variations of the geomagnetic field prior to direct observations are inferred from archeo- and paleomagnetic experiments. Seemingly unusual variations not seen in the present-day and historical field are of particular interest to constrain the full range of core dynamics. Recently, archeomagnetic intensity spikes, characterized by very high field values that appear to be associated with rapid secular variation rates, have been reported from several parts of the world. They were first noted in data from the Levant at around 900 BCE. A recent re-assessment of previous and new Levantine data, involving a rigorous quality assessment, interprets the observations as an extreme local geomagnetic high with at least two intensity spikes between the 11th and 8th centuries BCE. Subsequent reports of similar features from Asia, the Canary Islands and Texas raise the question of whether such features might be common occurrences, or whether they might even be part of a global magnetic field feature. Here we use spherical harmonic modeling to test two hypotheses: firstly, whether the Levantine and other potential spikes might be associated with higher dipole field intensity than shown by existing global field models around 1,000 BCE, and secondly, whether the observations from different parts of the world are compatible with a westward drifting intense flux patch. Our results suggest that the spikes originate from intense flux patches growing and decaying mostly in situ, combined with stronger and more variable dipole moment than shown by previous global field models. Axial dipole variations no more than 60% higher than observed in the present field, probably within the range of normal geodynamo behavior, seem sufficient to explain the observations.

2015
Panovska, S, Korte M, Finlay CC, Constable CG.  2015.  Limitations in paleomagnetic data and modelling techniques and their impact on Holocene geomagnetic field models. Geophysical Journal International. 202:402-418.   10.1093/gji/ggv137   AbstractWebsite

Characterization of geomagnetic field behaviour on timescales of centuries to millennia is necessary to understand the mechanisms that sustain the geodynamo and drive its evolution. As Holocene paleomagnetic and archeomagnetic data have become more abundant, strategies for regularized inversion of modern field data have been adapted to produce numerous time-varying global field models. We evaluate the effectiveness of several approaches to inversion and data handling, by assessing both global and regional properties of the resulting models. Global Holocene field models cannot resolve Southern hemisphere regional field variations without the use of sediments. A standard data set is used to construct multiple models using two different strategies for relative paleointensity calibration and declination orientation and a selection of starting models in the inversion procedure. When data uncertainties are considered, the results are similar overall regardless of whether we use iterative calibration and reorientation, or co-estimation of the calibration and orientation parameters as part of the inversion procedure. In each case the quality of the starting model used for initial relative paleointensity calibration and declination orientation is crucial and must be based on the best absolute information available. Without adequate initial calibration the morphology of dipole moment variations can be recovered but its absolute value will be correlated with the initial intensity calibrations, an effect that might be mitigated by ensuring an appropriate fit to enough high quality absolute intensity data with low uncertainties. The declination reorientation mainly impacts regional field structure and in the presence of non-zonal fields will result in a non-zero local average. The importance of declination orientation is highlighted by inconsistencies in the West Pacific and Australian sediment records in CALS10k.1b model. Great care must also be taken to assess uncertainties associated with both paleomagnetic and age data and to evaluate the effects of poor data distribution. New consistently allocated uncertainty estimates for sediment paleomagnetic records highlight the importance of adequate uncertainties in the inversion process, as they determine the relative weighting among the data and overall normalized misfit levels which in turn influence the complexity of the inferred field models. Residual distributions suggest that the most appropriate misfit measure is the L-1 norm (minimum absolute deviation) rather than L-2 (least squares), but this seems to have relatively minor impact on the overall results. For future Holocene field modelling we see a need for comprehensive methods to assess uncertainty in individual archeomagnetic data so that these data or models derived from them can be used for reliable initial relative paleointensity calibration and declination orientation in sediments. More work will be needed to assess whether co-estimation or an iterative approach to inversion is more efficient overall. This would be facilitated by realistic and globally consistent data and age uncertainties from the paleomagnetic community.

2011
Korte, M, Constable C, Donadini F, Holme R.  2011.  Reconstructing the Holocene geomagnetic field. Earth and Planetary Science Letters. 312:497-505.   10.1016/j.epsl.2011.10.031   AbstractWebsite

Knowledge of the Holocene evolution of Earth's magnetic field is important for understanding geodynamo processes in the core, is necessary for studying long-term solar-terrestrial relationships, and can provide useful age constraints for archeologicaland stratigraphic applications. Continuous time-varying global field models based on archeo- and paleomagnetic data are useful tools in this regard. We use a comprehensive data compilation and recently refined modelling strategies to produce CALS10k.1b, the first time-varying spherical harmonic geomagnetic field model spanning 10 ky. The model is an average obtained from bootstrap sampling to take account of uncertainties in magnetic components and ages in the data (and hence has version number 1b instead of 1). This model shows less spatial and temporal resolution than earlier versions for 0-3 ka, and particularly aims to provide a robust representation of the large-scale field at the core-mantle boundary (CMB). We discuss the geomagnetic dipole evolution and changes in Holocene magnetic field morphology at the CMB as shown by the new reconstruction. The results are compatible with earlier models (CALS3k.3 and CALS3k.4) for 0-3 ka, but reveal some clear deficiencies in the 0-7 ka CALS7K.2 model prior to 3 ka. CALS10k.1b is able to resolve mobile and structurally-evolving high latitude radial field flux lobes at the CMB in both hemispheres, as well as persistent non-zonal structure, in the 10 ky average. Contributions to the average field from time-varying structures in the equatorial Indonesian-Australian region are particularly striking. (C) 2011 Elsevier B.V. All rights reserved.

2009
Donadini, F, Korte M, Constable CG.  2009.  Geomagnetic field for 0-3 ka: 1. New data sets for global modeling. Geochemistry Geophysics Geosystems. 10   10.1029/2008gc002295   AbstractWebsite

Paleomagnetic and archeomagnetic records are used in both regional and global studies of Earth's magnetic field. We present a description and assessment of five newly compiled data sets, also used in the companion paper by Korte et al. (2009) to produce a series of time-varying spherical harmonic models of the geomagnetic field for the last 3000 years. Data are drawn from our compilation of lake sediment records and from the online database, GEOMAGIA50v2. The five selections are available from the EarthRef Digital Archive at http://earthref.org/cgi-bin/erda.cgi?n=944. Data are grouped according to the source of material, and we conducted separate assessments of reliability for archeomagnetic artifacts and lava flows (the ARCH3k_dat data set) and for sediments (SED3k_dat). The overall number of data is 55% greater than in previous compilations. Constrained data sets were selected using different criteria for each group. Winnowing of archeological data was based on uncertainties supplied by the original data providers. The lake sediment data assessment relied on preassigned age uncertainties and one or more of the following: comparisons with archeomagnetic data from the same region, regional consistency among several lakes, and consistency with global archeomagnetic models. We discuss relative merits of a larger unconstrained data set or a smaller (possibly) more reliable one. The constrained data sets eliminate a priori up to 35% of the available data in each case and rely on potentially subjective assessments of data quality. Given the limited data available our analyses indicate that iterative rejection of a small number (1-1.5%) of outlying data during global field modeling is a preferable approach. Specific regional comparisons among the models and data support the conclusion that Korte et al.'s outlier-free CALS3k.3 model based on all available measurements from sediments and archeological artifacts currently provides the best global representation of the 0-3 ka field; the ARCH3k.1 model provides a better fit to the denser European archeomagnetic data and may be better in that region.

2006
Korte, M, Constable CG.  2006.  On the use of calibrated relative paleointensity records to improve millennial-scale geomagnetic field models. Geochemistry Geophysics Geosystems. 7   10.1029/2006gc001368   AbstractWebsite

[ 1] Current millennial-scale time-varying global geomagnetic field models suffer from a lack of intensity data compared to directional data, because only thermoremanently magnetized material can provide absolute information about the past field strength. The number of archeomagnetic artifacts that can provide such data diminishes rapidly prior to 3000 B. C. Sediment cores provide time series of declination and inclination and of variations of magnetization: the latter can reflect relative geomagnetic field variations if suitably normalized. We propose a calibration technique based on predictions from global models and use the CALS7K. 2 model to calibrate relative paleointensity records from 22 globally distributed locations and assess whether they reflect actual field variations. All except a few contain useful information for 0 to 7 ka and could be used to improve the existing models. Using synthetic data from a numerical dynamo simulation, we show that with the existing directional data the distribution of intensity data has an important influence on model quality. Intensity data from a broad range of latitudes seem particularly important. This study opens the possibility of extending global time-varying geomagnetic field models further back in time than the current 7 kyr interval.

Korte, M, Constable CG.  2006.  Centennial to millennial geomagnetic secular variation. Geophysical Journal International. 167:43-52.   10.1111/j.1365-246X.2006.03088.x   AbstractWebsite

A time-varying spherical harmonic model of the palaeomagnetic field for 0-7 ka is used to investigate large-scale global geomagnetic secular variation on centennial to millennial scales. We study dipole moment evolution over the past 7 kyr, and estimate its rate of change using the Gauss coefficients of degree 1 (dipole coefficients) from the CALS7K.2 field model and by two alternative methods that confirm the robustness of the predicted variations. All methods show substantial dipole moment variation on timescales ranging from centennial to millennial. The dipole moment from CALS7K.2 has the best resolution and is able to resolve the general decrease in dipole moment seen in historical observations since about 1830. The currently observed rate of dipole decay is underestimated by CALS7K.2, but is still not extraordinarily strong in comparison to the rates of change shown by the model over the whole 7 kyr interval. Truly continuous phases of dipole decrease or increase are decadal to centennial in length rather than longer-term features. The general large-scale secular variation shows substantial changes in power in higher spherical harmonic degrees on similar timescales to the dipole. Comparisons are made between statistical variations calculated directly from CALS7K.2 and longer-term palaeosecular variation models: CALS7K.2 has lower overall variance in the dipole and quadrupole terms, but exhibits an imbalance between dispersion in g(2)(1) and h(2)(1), suggestive of long-term non-zonal structure in the secular variations.

Lawrence, KP, Constable CG, Johnson CL.  2006.  Paleosecular variation and the average geomagnetic field at +/- 20 degrees latitude. Geochemistry Geophysics Geosystems. 7   10.1029/2005gc001181   AbstractWebsite

[1] We assembled a new paleomagnetic directional data set from lava flows and thin dikes for four regions centered on +/-20 degrees latitude: Hawaii, Mexico, the South Pacific, and Reunion. We investigate geomagnetic field behavior over the past 5 Myr and address whether geographical differences are recorded by our data set. We include inclination data from other globally distributed sites with the +/-20 degrees data to determine the best fitting time-averaged field (TAF) for a two-parameter longitudinally symmetric (zonal) model. Values for our model parameters, the axial quadrupole and octupole terms, are 4% and 6% of the axial dipole, respectively. Our estimate of the quadrupole term is compatible with most previous studies of deviations from a geocentric axial dipole (GAD) field. Our estimated octupole term is larger than that from normal polarity continental and igneous rocks, and oceanic sediments, but consistent with that from reversed polarity continental and igneous rocks. The variance reduction compared with a GAD field is similar to 12%, and the remaining signal is attributed to paleosecular variation (PSV). We examine PSV at +/-20 degrees using virtual geomagnetic pole (VGP) dispersion and comparisons of directional distributions with simulations from two statistical models. Regionally, the Hawaii and Reunion data sets lack transitional magnetic directions and have similar inclination anomalies and VGP dispersion. In the Pacific hemisphere, Hawaii has a large inclination anomaly, and the South Pacific exhibits high PSV. The deviation of the TAF from a GAD contradicts earlier ideas of a "Pacific dipole window,'' and the strong regional PSV in the South Pacific contrasts with the generally low secular variation found on short timescales. The TAF and PSV at Hawaii and Reunion are distinct from values for the South Pacific and Mexico, demonstrating the need for time-averaged and paleosecular variation models that can describe nonzonal field structures. Investigations of zonal statistical PSV models reveal that recent models are incompatible with the empirical +/-20 degrees directional distributions and cannot fit the data by simply adjusting relative variance contributions to the PSV. The +/-20 degrees latitude data set also suggests less PSV and smaller persistent deviations from a geocentric axial dipole field during the Brunhes.

2003
Tauxe, L, Constable C, Johnson CL, Koppers AAP, Miller WR, Staudigel H.  2003.  Paleomagnetism of the southwestern USA recorded by 0-5 Ma igneous rocks. Geochemistry Geophysics Geosystems. 4   10.1029/2002gc000343   AbstractWebsite

The issue of permanent nondipole contributions to the time-averaged field lies at the very heart of paleomagnetism and the study of the ancient geomagnetic field. In this paper we focus on paleomagnetic directional results from igneous rocks of the southwestern U. S. A. in the age range 0-5 Ma and investigate both the time-averaged field and its variability about the mean value. Several decades of work in the southwestern United States have resulted in the publication of paleomagnetic data from over 800 individual paleomagnetic sites. As part of a new investigation of the San Francisco Volcanics, we collected paleomagnetic samples from 47 lava flows, many of which have been previously dated. The new data combined with published data are highly scattered. Contributions to the scatter were considered, and we find that removal of data sets from tectonically active areas and judicious selection according to Fisher's [1953] precision parameter results in an axially symmetric data distribution with normal and reverse modes that are indistinguishable from antipodal. Monte Carlo simulations suggest that a minimum of 5 samples per site are needed to estimate the precision parameter sufficiently accurately to allow its use as a determinant of data quality. Numerical simulations from statistical paleosecular variation models indicate the need for several hundred paleomagnetic sites to get an accurate determination of the average field direction and are also used to investigate the directional bias that results from averaging unit vectors rather than using the full field vector. Average directions for the southwestern U. S. A. show small deviations from a geocentric axial dipole field, but these cannot be considered statistically significant. Virtual geomagnetic pole (VGP) dispersions are consistent with those from globally distributed observations analyzed by McElhinny and McFadden [1997]. However, a systematic investigation of the effect of imposing a cutoff on VGPs with large deviations from the geographic axis indicates that while it may reduce bias in calculating the average direction, such a procedure can result in severe underestimates of the variance in the geomagnetic field. A more satisfactory solution would be to use an unbiased technique for joint estimation of the mean direction and variance of the field distribution.

2000
Constable, CG, Johnson CL, Lund SP.  2000.  Global geomagnetic field models for the past 3000 years: transient or permanent flux lobes? Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences. 358:991-1008. AbstractWebsite

PSVMOD1.0 is a compilation of globally distributed palaeodirectional data from archaeomagnetic artefacts, lava flows, and lake sediments at 24 sites evaluated at 100 year intervals from 1000 BC to AD 1800. We estimate uncertainty in these measures of declination and inclination by comparison with predictions from standard historical models in time-intervals of overlap, and use the 100-year samples and their associated uncertainties to construct a sequence of minimum structure global geomagnetic field models. Global predictions of radial magnetic field at the core mantle boundary (CMB), as well as inclination and declination anomalies at the Earth's surface, provide an unprecedented view of geomagnetic secular variations over the past 3000 years, and demonstrate a consistent evolution of the field with time. Resolution of the models is poorest in the Southern Hemisphere, where only six of the 24 sites are located, several with incomplete temporal coverage. Low-flux regions seen in the historical field near the North Pole are poorly resolved, but the Northern Hemisphere flux lobes are clearly visible in the models. These lobes are not fixed in position and intensity, but they only rarely venture into the Pacific hemisphere. The Pacific region is seen to have experienced significant secular variation: a strong negative inclination anomaly in the region, like that seen in 0-5 Ma models, persists from 1000 BC until AD 1000 and then gradually evolves into the smaller positive anomaly seen today. On average bt tween 1000 BC and AD 1800, the non-axial-dipole contribution to the radial magnetic field at the core-mantle boundary is largest in the north-central Pacific, and beneath Central Asia, with clear non-zonal contributions. At the Earth's surface, average inclination anomalies are large and negative in the central Pacific, and most positive slightly to the east of Central Africa. Inclination anomalies decrease with increasing latitude. Average declinations are smallest in equatorial regions, again with strong longitudinal variations, largest negative departures are centred over Australia and Eastern Asia. Secular variation at the Earth's surface is quantified by standard deviation of inclination and declination about their average values, and at the CMB by standard deviation in radial magnetic field. All three show significant geographical variations, but appear incompatible with the idea that secular variation in the Pacific hemisphere is permanently attenuated by greatly enhanced conductivity in D " beneath the region.

1995
Johnson, CL, Constable CG.  1995.  The Time-Averaged Geomagnetic-Field As Recorded By Lava Flows Over The Past 5 Million-Years. Geophysical Journal International. 122:489-519.   10.1111/j.1365-246X.1995.tb07010.x   AbstractWebsite

A recently compiled lava flow data base spanning the last 5 million years is used to investigate properties of the time-averaged geomagnetic field. More than 90 per cent of the power in the palaeofield can be accounted for by a geocentric axial dipole; however, there are significant second-order structures in the held. Declination and inclination anomalies for the new data base indicate that the main second-order signal is the 'far-sided' effect, and there is also evidence for non-zonal structure. VGP (virtual geomagnetic pole) latitude distributions indicate that, over the last 5 million years, normal and reverse polarity morphologies are different, and that any changes in the normal polarity field morphology are undetectable, given the present data distribution. Regularized non-linear inversions of the palaeomagnetic directions support all these observations. We test the hypothesis that zonal models for the time-averaged field are adequate to describe the data and find that they are not. Non-zonal models are needed to fit the data to within the required tolerance level. Normal and reverse polarity held models obtained are significantly different. Field models obtained for the Brunhes epoch data alone are much smoother than those obtained from combining an the normal polarity data; simulations indicate that these differences can be explained by the less extensive data distribution for the Brunhes epoch. The field model for all of the normal polarity data (LN1) contains features observed in the historical field maps, although the details differ. LN1 suggests that, although the two northern hemisphere flux lobes observed in the historical field are stationary to a first-order approximation, they do show changes in position and amplitude. A. third, less pronounced flux lobe is observed in LN1 over central Europe. The lack of structure ih the southern hemisphere is due in part to the paucity of data. Jackknife estimates of the field models for different subsets of the data suggest that a few sites contribute significant structure to the final field models. More conservative estimates of the time-averaged field morphology are obtained by removing these sites.