Publications

Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
2018
Davies, CJ, Constable CG.  2018.  Searching for geomagnetic spikes in numerical dynamo simulations. Earth and Planetary Science Letters. 504:72-83.   10.1016/j.epsl.2018.09.037   AbstractWebsite

We use numerical dynamo simulations to investigate rapid changes in geomagnetic field intensity. The work is motivated by paleomagnetic observations of 'geomagnetic spikes', events where the field intensity rose and then fell by a factor of 2-3 over decadal timescales and a confined spatial region. No comparable events have been found in the historical record and so geomagnetic spikes may contain new and important information regarding the operation of the geodynamo. However, they are also controversial because uncertainties and resolution limitations in the available data hinder efforts to define their spatiotemporal characteristics. This has led to debate over whether such extreme events can originate in Earth's liquid core. Geodynamo simulations produce high spatio-temporal resolution intensity information, but must be interpreted with care since they cannot yet run at the conditions of Earth's liquid core. We employ reversing and non-reversing geodynamo simulations run at different physical conditions and consider various methods of scaling the results to allow comparison with Earth. In each simulation we search for 'extremal events', defined as the maximum intensity difference between consecutive time points, at each location on a 2 degrees latitude-longitude grid at Earth's surface, thereby making no assumptions regarding the spatio-temporal character of the event. Extremal events display spike-shaped time-series in some simulations, though they can often be asymmetric about the peak intensity. Maximum rates of change reach 0.75 mu Tyr(-1) in several simulations, the lower end of estimates for spikes, suggesting that such events can originate from the core. The fastest changes generally occur at latitudes > 50 degrees, which could be used to guide future data acquisitions. Extremal events in the simulations arise from rapid intensification of flux patches as they migrate across the core surface, rather than emergence of flux from within the core. The prospect of observing more spikes in the paleomagnetic record appears contingent on finding samples at the right location and time to sample this particular phase of flux patch evolution. (C) 2018 Published by Elsevier B.V.

2014
Davies, CJ, Constable CG.  2014.  Insights from geodynamo simulations into long-term geomagnetic field behaviour. Earth and Planetary Science Letters. 404:238-249.   10.1016/j.epsl.2014.07.042   AbstractWebsite

Detailed knowledge of the long-term spatial configuration and temporal variability of the geomagnetic field is lacking because of insufficient data for times prior to 10 ka. We use realisations from suitable numerical simulations to investigate three important questions about stability of the geodynamo process: is the present field representative of the past field; does a time-averaged field actually exist; and, supposing it exists, how long is needed to define such a field. Numerical geodynamo simulations are initially selected to meet existing criteria for morphological similarity to the observed magnetic field. A further criterion is introduced to evaluate similarity of long-term temporal variations. Allowing for reasonable uncertainties in the observations, observed and synthetic axial dipole moment frequency spectra for time series of order a million years in length should be fit by the same power law model. This leads us to identify diffusion time as the appropriate time scaling for such comparisons. In almost all simulations, intervals considered to have good morphological agreement between synthetic and observed field are shorter than those of poor agreement. The time needed to obtain a converged estimate of the time-averaged field was found to be comparable to the length of the simulation, even in non-reversing models, suggesting that periods of stable polarity spanning many magnetic diffusion times are needed to obtain robust estimates of the mean dipole field. Long term field variations are almost entirely attributable to the axial dipole; nonzonal components converge to long-term average values on relatively short timescales (15-20 kyr). In all simulations, the time-averaged spatial power spectrum is characterised by a zigzag pattern as a function of spherical harmonic degree, with relatively higher power in odd degrees than in even degrees. We suggest that long-term spatial characteristics of the observed field may emerge on averaging times that are within reach for the next generation of global time-varying paleomagnetic field models. (C) 2014 Elsevier B.V. All rights reserved.

2011
Ziegler, LB, Constable CG.  2011.  Asymmetry in growth and decay of the geomagnetic dipole. Earth and Planetary Science Letters. 312:300-304.   10.1016/j.epsl.2011.10.019   AbstractWebsite

The geodynamo in Earth's core is responsible for magnetic field changes on diverse timescales, including numerous enigmatic reversals of the dipole field polarity. Understanding the physical processes driving them is an active area of investigation via both paleomagnetic work and numerical simulations of the geodynamo. Some previous studies on geomagnetic field intensity detected a sawtooth pattern of intensity around reversals: a gradual decay in field strength preceding a reversal followed by rapid growth afterwards. Here we characterize distinct statistical properties for increasing and decreasing dipole strength over the past two million years. Examining the geomagnetic field and its time derivative on a range of time scales reveals that for periods longer than about 25 ky there is a clear asymmetry in the statistical distributions for growth versus decay rates of the dipole strength. At 36 ky period, average growth rate is about 20% larger than the decay rate, and the field spends 54% of its time decaying, but only 46% growing. These differences are not limited to times when the field is reversing, suggesting that the asymmetry is controlled by fundamental physical processes underlying all paleosecular variation. The longer decay cycle might suggest the possibility of episodic periods of subcritical dynamo activity where the field is dominated by diffusive processes, followed by transient episodes of strong growth of the axial dipole. However, our work finds no clear separation of timescales for the influence of diffusive and convective processes on dipole moment: both seem to play an important but asymmetric role on the 25-150 ky timescale. (C) 2011 Elsevier B.V. All rights reserved.