Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
2015
Panovska, S, Korte M, Finlay CC, Constable CG.  2015.  Limitations in paleomagnetic data and modelling techniques and their impact on Holocene geomagnetic field models. Geophysical Journal International. 202:402-418.   10.1093/gji/ggv137   AbstractWebsite

Characterization of geomagnetic field behaviour on timescales of centuries to millennia is necessary to understand the mechanisms that sustain the geodynamo and drive its evolution. As Holocene paleomagnetic and archeomagnetic data have become more abundant, strategies for regularized inversion of modern field data have been adapted to produce numerous time-varying global field models. We evaluate the effectiveness of several approaches to inversion and data handling, by assessing both global and regional properties of the resulting models. Global Holocene field models cannot resolve Southern hemisphere regional field variations without the use of sediments. A standard data set is used to construct multiple models using two different strategies for relative paleointensity calibration and declination orientation and a selection of starting models in the inversion procedure. When data uncertainties are considered, the results are similar overall regardless of whether we use iterative calibration and reorientation, or co-estimation of the calibration and orientation parameters as part of the inversion procedure. In each case the quality of the starting model used for initial relative paleointensity calibration and declination orientation is crucial and must be based on the best absolute information available. Without adequate initial calibration the morphology of dipole moment variations can be recovered but its absolute value will be correlated with the initial intensity calibrations, an effect that might be mitigated by ensuring an appropriate fit to enough high quality absolute intensity data with low uncertainties. The declination reorientation mainly impacts regional field structure and in the presence of non-zonal fields will result in a non-zero local average. The importance of declination orientation is highlighted by inconsistencies in the West Pacific and Australian sediment records in CALS10k.1b model. Great care must also be taken to assess uncertainties associated with both paleomagnetic and age data and to evaluate the effects of poor data distribution. New consistently allocated uncertainty estimates for sediment paleomagnetic records highlight the importance of adequate uncertainties in the inversion process, as they determine the relative weighting among the data and overall normalized misfit levels which in turn influence the complexity of the inferred field models. Residual distributions suggest that the most appropriate misfit measure is the L-1 norm (minimum absolute deviation) rather than L-2 (least squares), but this seems to have relatively minor impact on the overall results. For future Holocene field modelling we see a need for comprehensive methods to assess uncertainty in individual archeomagnetic data so that these data or models derived from them can be used for reliable initial relative paleointensity calibration and declination orientation in sediments. More work will be needed to assess whether co-estimation or an iterative approach to inversion is more efficient overall. This would be facilitated by realistic and globally consistent data and age uncertainties from the paleomagnetic community.

2011
Ziegler, LB, Constable CG, Johnson CL, Tauxe L.  2011.  PADM2M: a penalized maximum likelihood model of the 0-2 Ma palaeomagnetic axial dipole moment. Geophysical Journal International. 184:1069-1089.   10.1111/j.1365-246X.2010.04905.x   AbstractWebsite

P>We present a new time-varying model for palaeomagnetic axial dipole moment (PADM) for the past 2 Myr and compare it with earlier virtual axial dipole moment (VADM) reconstructions which have been based on stacking and averaging scaled relative palaeointensity records. The PADM is derived from both absolute and relative palaeointensity data and constructed using a new penalized maximum likelihood (PML) approach to recover a cubic B-spline representation of axial-dipole field variations on million year timescales. The PML method is explicitly intended to reduce bias in estimating the true axial dipole moment that arises in average VADM reconstructions. We apply the PML method to a set of 96 032 published data (1800 palaeointensities from igneous rocks, 3300 archaeointensities and 86 relative palaeointensity time-series of variable lengths and resolutions). Two models are discussed: PADM2Mp is a trial model based on a subset of the nine longest available sedimentary records; PADM2M uses a comprehensive data set (76 records, 81 446 data; 10 records were eliminated) and is our preferred model. PADM2M has a lower mean than existing VADM reconstructions but shows similarities in long-period variability. Some differences in timing, amplitude and resolution of certain features can be attributed to variations in age assignments. Others result from our more comprehensive data set and a reduction in bias attributable to PML modelling. PADM2M has an average axial dipole moment over 0-2 Ma of 5.3 x 1022 Am2 with a standard deviation of 1.5 x 1022 Am2. The Brunhes chron average (6.2 x 1022 Am2) is higher than for earlier epochs of Matuyama (4.8 x 1022 Am2), as seen in some previous studies. The power spectrum for our model agrees with previous estimates of the global palaeomagnetic power spectrum for frequencies up to about 102 Myr-1. We see no distinctive evidence in the power spectrum for orbital forcing of geodynamo behaviour.