Export 13 results:
Sort by: Author Title Type [ Year  (Desc)]
Korte, M, Brown MC, Gunnarson SR, Nilsson A, Panovska S, Wardinski I, Constable CG.  2019.  Refining Holocene geochronologies using palaeomagnetic records. Quaternary Geochronology. 50:47-74.   10.1016/j.quageo.2018.11.004   AbstractWebsite

The aperiodic nature of geomagnetic field variations, both in intensity and direction, can aid in dating archaeological artefacts, volcanic rocks, and sediment records that carry a palaeomagnetic signal. The success of palaeomagnetic dating relies upon our knowledge of past field variations at specific locations. Regional archaeo- and palaeomagnetic reference curves and predictions from global geomagnetic field models provide our best description of field variations through the Holocene. State-of-the-art palaeomagnetic laboratory practices and accurate independent age controls are prerequisites for deriving reliable reference curves and models from archaeological, volcanic, and sedimentary palaeomagnetic data. In this review paper we give an overview of these prerequisites and the available reference curves and models, discuss techniques for palaeomagnetic dating, and outline its limitations. In particular, palaeomagnetic dating on its own cannot give unique results, but rather serves to refine or confirm ages obtained by other methods. Owing to the non-uniform character of magnetic field variations in different regions, care is required when choosing a palaeomagnetic dating curve, so that the distance between the dating curve and the record to be dated is not too large. Accurate reporting and incorporation of new, independently dated archaeo- and palaeomagnetic results into databases will help to improve reference curves and global models for all regions on Earth.

Panovska, S, Constable CG, Korte M.  2018.  Extending global continuous geomagnetic field reconstructions on timescales beyond human civilization. Geochemistry Geophysics Geosystems. 19:4757-4772.   10.1029/2018gc007966   AbstractWebsite

Study of the late Quaternary geomagnetic field contributes significantly to understanding the origin of millennial-scale paleomagnetic secular variations, the structure of geomagnetic excursions, and the long-term shielding by the geomagnetic field. A compilation of paleomagnetic sediment records and archeomagnetic and lava flow data covering the past 100ka enables reconstruction of the global geomagnetic field on such long-term scales. We use regularized inversion to build the first global, time-dependent, geomagnetic field model spanning the past 100ka, named GGF100k (Global Geomagnetic Field over the past 100 ka). Spatial parametrization of the model is in spherical harmonics and time variations with cubic splines. The model is heavily constrained by more than 100 continuous sediment records covering extended periods of time, which strongly prevail over the limited number of discrete snapshots provided by archeomagnetic and volcanic data. Following an assessment of temporal resolution in each sediment's magnetic record, we have introduced smoothing kernels into the forward modeling when assessing data misfit. This accommodates the smoothing inherent in the remanence acquisition in individual sediment paleomagnetic records, facilitating a closer fit to both high- and low-resolution records in regions where some sediments have variable temporal resolutions. The model has similar spatial resolution but less temporal complexity than current Holocene geomagnetic field models. Using the new reconstruction, we discuss dipole moment variations, the time-averaged field, and paleomagnetic secular variation activity. The new GGF100k model fills the gap in the geomagnetic power spectrum in the frequency range 100-1,000Ma(-1).

Korte, M, Constable CG.  2018.  Archeomagnetic intensity spikes: Global or regional geomagnetic field features? Frontiers in Earth Science. 6   10.3389/feart.2018.00017   AbstractWebsite

Variations of the geomagnetic field prior to direct observations are inferred from archeo- and paleomagnetic experiments. Seemingly unusual variations not seen in the present-day and historical field are of particular interest to constrain the full range of core dynamics. Recently, archeomagnetic intensity spikes, characterized by very high field values that appear to be associated with rapid secular variation rates, have been reported from several parts of the world. They were first noted in data from the Levant at around 900 BCE. A recent re-assessment of previous and new Levantine data, involving a rigorous quality assessment, interprets the observations as an extreme local geomagnetic high with at least two intensity spikes between the 11th and 8th centuries BCE. Subsequent reports of similar features from Asia, the Canary Islands and Texas raise the question of whether such features might be common occurrences, or whether they might even be part of a global magnetic field feature. Here we use spherical harmonic modeling to test two hypotheses: firstly, whether the Levantine and other potential spikes might be associated with higher dipole field intensity than shown by existing global field models around 1,000 BCE, and secondly, whether the observations from different parts of the world are compatible with a westward drifting intense flux patch. Our results suggest that the spikes originate from intense flux patches growing and decaying mostly in situ, combined with stronger and more variable dipole moment than shown by previous global field models. Axial dipole variations no more than 60% higher than observed in the present field, probably within the range of normal geodynamo behavior, seem sufficient to explain the observations.

Ziegler, LB, Constable CG.  2015.  Testing the geocentric axial dipole hypothesis using regional paleomagnetic intensity records from 0 to 300 ka. Earth and Planetary Science Letters. 423:48-56.   10.1016/j.epsl.2015.04.022   AbstractWebsite

Absolute and relative geomagnetic paleointensity records reveal variations in geomagnetic dipole strength, either via averaging time series of virtual axial dipole moments, or through formal inversion strategies like the penalized maximum likelihood (PML) method used for the PADM2M (Paleomagnetic Axial Dipole Moment for 0-2 Ma) model. However, departures from the most basic geocentric axial dipole (GAD) structure are obvious on centennial to millennial time scales, and paleomagnetic records from igneous rocks suggest small deviations persist on million year time scales. Spatial variations in heat flow at the core-mantle boundary (inferred from large low shear velocity provinces, LLSVPs) are widely suspected to influence both the average geomagnetic field and its regional secular variation. Long term departures from a GAD configuration should be visible from regional differences in paleointensity reconstructions. We use a PML method to construct time-varying models of regional axial dipole moment (RADMs) from a combined set of absolute and relative palebintensity data, and compare results from the last 300 kyr. RADMs are created from sediment records selected from specific latitude and longitude bands. We also test whether grouping records lying above each of the 2 major LLSVPs (centered on Africa and the Pacific) produce RADMs that are distinct from those above regions lacking anomalous seismic structure. Systematic differences appear in the various regional results. In the most recent part of the record regional differences are broadly similar to the Holocene, CALS10k.1b, time-varying geomagnetic field model spanning 0-10 ka. However, lack of Southern hemisphere records prevents direct confirmation of the hemispheric asymmetry present in CALS10k.1b in both average virtual axial dipole moment and its variability. As expected, the 300 kyr RADMs exhibit greater overall temporal field variability than is seen over 0-10 ka. Average RADM is higher in the Pacific and in Equatorial regions than in the Atlantic and in mid-high latitude northern hemisphere regions. Higher average RADMs are associated with lower overall field variability and less pronounced excursional signatures. Notably, the lower variability in the Pacific sector seen here (defined by either longitude band or LLSVP location) suggests that the modern low paleosecular variation there extends over at least the past few hundred thousand years. RADMs identified with LLSVPs show systematic deviations from the non-LLSVP group of records, with distinct characteristics for the African and Pacific provinces. The African LLSVP generates more pronounced RADM minima associated with geomagnetic excursions, and in general paleointensity decreases associated with excursions occur first in the Atlantic longitude sector and over the African LLSVP. (C) 2015 Elsevier B.V. All rights reserved.

Brown, MC, Donadini F, Nilsson A, Panovska S, Frank U, Korhonen K, Schuberth M, Korte M, Constable CG.  2015.  GEOMAGIA50.v3: 2. A new paleomagnetic database for lake and marine sediments. Earth Planets and Space. 67   10.1186/s40623-015-0233-z   AbstractWebsite

Background: GEOMAGIA50.v3 for sediments is a comprehensive online database providing access to published paleomagnetic, rock magnetic, and chronological data obtained from lake and marine sediments deposited over the past 50 ka. Its objective is to catalogue data that will improve our understanding of changes in the geomagnetic field, physical environments, and climate. Findings: GEOMAGIA50.v3 for sediments builds upon the structure of the pre-existing GEOMAGIA50 database for magnetic data from archeological and volcanic materials. A strong emphasis has been placed on the storage of geochronological data, and it is the first magnetic archive that includes comprehensive radiocarbon age data from sediments. The database will be updated as new sediment data become available. Conclusions: The web-based interface for the sediment database is located at This paper is a companion to Brown et al. (Earth Planets Space doi:10.1186/s40623-015-0232-0,2015) and describes the data types, structure, and functionality of the sediment database.

Korte, M, Constable C.  2011.  Improving geomagnetic field reconstructions for 0-3 ka. Physics of the Earth and Planetary Interiors. 188:247-259.   10.1016/j.pepi.2011.06.017   AbstractWebsite

Global geomagnetic field reconstructions on millennial time scales can be based on comprehensive paleomagnetic data compilations but, especially for older data, these still suffer from limitations in data quality and age controls as well as poor temporal and spatial coverage. Here we present updated global models for the time interval 0-3 ka where additions to the data basis mainly impact the South-East Asian, Alaskan, and Siberian regions. We summarize recent progress in millennial scale modelling, documenting the cumulative results from incremental modifications to the standard algorithms used to produce regularized time-varying spherical harmonic models spanning 1000 BC to 1990 AD: from 1590 to 1990 AD gauss coefficients from the historical gufm1 model supplement the paleomagnetic information; in addition to absolute paleointensities, calibrated relative paleointensity data from sediments are now routinely included; iterative data rejection and recalibration of relative intensity records from sediments ensure stable results; bootstrap experiments to generate uncertainty estimates for the model take account of uncertainties in both age and magnetic elements and additionally assess the impact of sampling in both time and space. Based on averaged results from bootstrap experiments, taking account of data and age uncertainties, we distinguish more conservative model estimates CALS3k.nb representing robust field structure at the core-mantle boundary from relatively high resolution models CALS3k.n for model versions n = 3 and 4. We assess the impact of newly available data and modifications to the modelling method by comparing the previous CALS3k.3, the new CALS3k.4, and the conservative new model, CALS3k.4b. We conclude that with presently available data it is not feasible to produce a model that is equally suitable for relatively high-resolution field predictions at Earth's surface and robust reconstruction of field evolution, avoiding spurious structure, at the core-mantle boundary (CMB). We presently consider CALS3k.4 the best high resolution model and recommend the more conservative lower resolution version for studies of field evolution at the CMB. (C) 2011 Elsevier B.V. All rights reserved.

Korte, M, Constable C, Donadini F, Holme R.  2011.  Reconstructing the Holocene geomagnetic field. Earth and Planetary Science Letters. 312:497-505.   10.1016/j.epsl.2011.10.031   AbstractWebsite

Knowledge of the Holocene evolution of Earth's magnetic field is important for understanding geodynamo processes in the core, is necessary for studying long-term solar-terrestrial relationships, and can provide useful age constraints for archeologicaland stratigraphic applications. Continuous time-varying global field models based on archeo- and paleomagnetic data are useful tools in this regard. We use a comprehensive data compilation and recently refined modelling strategies to produce CALS10k.1b, the first time-varying spherical harmonic geomagnetic field model spanning 10 ky. The model is an average obtained from bootstrap sampling to take account of uncertainties in magnetic components and ages in the data (and hence has version number 1b instead of 1). This model shows less spatial and temporal resolution than earlier versions for 0-3 ka, and particularly aims to provide a robust representation of the large-scale field at the core-mantle boundary (CMB). We discuss the geomagnetic dipole evolution and changes in Holocene magnetic field morphology at the CMB as shown by the new reconstruction. The results are compatible with earlier models (CALS3k.3 and CALS3k.4) for 0-3 ka, but reveal some clear deficiencies in the 0-7 ka CALS7K.2 model prior to 3 ka. CALS10k.1b is able to resolve mobile and structurally-evolving high latitude radial field flux lobes at the CMB in both hemispheres, as well as persistent non-zonal structure, in the 10 ky average. Contributions to the average field from time-varying structures in the equatorial Indonesian-Australian region are particularly striking. (C) 2011 Elsevier B.V. All rights reserved.

Donadini, F, Korte M, Constable C.  2010.  Millennial Variations of the Geomagnetic Field: from Data Recovery to Field Reconstruction. Space Science Reviews. 155:219-246.   10.1007/s11214-010-9662-y   AbstractWebsite

Variations of the geomagnetic field over past millennia can be determined from archeomagnetic data and paleomagnetic sediment records. The resolution and validity of any field reconstruction depends on the reliability of such indirect measurements of past field values. Considerable effort is invested to ensure that the magnetic minerals carrying the ancient magnetization are good, if not ideal, recorders of the magnetic field. This is achieved by performing a wide array of rock magnetic and microscopy investigations, many of which are outlined here. In addition to data quality, the spatial and temporal distributions of archeomagnetic and sediment records play a significant role in the accuracy of past field reconstruction. Global field reconstructions enable studies of dynamic processes in Earth's core. They rely on data compilations which ideally include information about the quality of a measurement and provide a useful archive for selecting data with the best characteristics. There is, however, a trade off between the total number of reliable data and the geographic or temporal coverage. In this review we describe the various types of paleomagnetic recorders, and the kind of measurements that are performed to gather reliable geomagnetic field information. We show which modeling strategies are most suitable, and the main features of the field that can be derived from the resulting models. Finally, we discuss prospects for progress in this kind of research.

Donadini, F, Korte M, Constable CG.  2009.  Geomagnetic field for 0-3 ka: 1. New data sets for global modeling. Geochemistry Geophysics Geosystems. 10   10.1029/2008gc002295   AbstractWebsite

Paleomagnetic and archeomagnetic records are used in both regional and global studies of Earth's magnetic field. We present a description and assessment of five newly compiled data sets, also used in the companion paper by Korte et al. (2009) to produce a series of time-varying spherical harmonic models of the geomagnetic field for the last 3000 years. Data are drawn from our compilation of lake sediment records and from the online database, GEOMAGIA50v2. The five selections are available from the EarthRef Digital Archive at Data are grouped according to the source of material, and we conducted separate assessments of reliability for archeomagnetic artifacts and lava flows (the ARCH3k_dat data set) and for sediments (SED3k_dat). The overall number of data is 55% greater than in previous compilations. Constrained data sets were selected using different criteria for each group. Winnowing of archeological data was based on uncertainties supplied by the original data providers. The lake sediment data assessment relied on preassigned age uncertainties and one or more of the following: comparisons with archeomagnetic data from the same region, regional consistency among several lakes, and consistency with global archeomagnetic models. We discuss relative merits of a larger unconstrained data set or a smaller (possibly) more reliable one. The constrained data sets eliminate a priori up to 35% of the available data in each case and rely on potentially subjective assessments of data quality. Given the limited data available our analyses indicate that iterative rejection of a small number (1-1.5%) of outlying data during global field modeling is a preferable approach. Specific regional comparisons among the models and data support the conclusion that Korte et al.'s outlier-free CALS3k.3 model based on all available measurements from sediments and archeological artifacts currently provides the best global representation of the 0-3 ka field; the ARCH3k.1 model provides a better fit to the denser European archeomagnetic data and may be better in that region.

Korte, M, Constable CG.  2006.  On the use of calibrated relative paleointensity records to improve millennial-scale geomagnetic field models. Geochemistry Geophysics Geosystems. 7   10.1029/2006gc001368   AbstractWebsite

[ 1] Current millennial-scale time-varying global geomagnetic field models suffer from a lack of intensity data compared to directional data, because only thermoremanently magnetized material can provide absolute information about the past field strength. The number of archeomagnetic artifacts that can provide such data diminishes rapidly prior to 3000 B. C. Sediment cores provide time series of declination and inclination and of variations of magnetization: the latter can reflect relative geomagnetic field variations if suitably normalized. We propose a calibration technique based on predictions from global models and use the CALS7K. 2 model to calibrate relative paleointensity records from 22 globally distributed locations and assess whether they reflect actual field variations. All except a few contain useful information for 0 to 7 ka and could be used to improve the existing models. Using synthetic data from a numerical dynamo simulation, we show that with the existing directional data the distribution of intensity data has an important influence on model quality. Intensity data from a broad range of latitudes seem particularly important. This study opens the possibility of extending global time-varying geomagnetic field models further back in time than the current 7 kyr interval.

McMillan, DG, Constable CG, Parker RL.  2002.  Limitations on stratigraphic analyses due to incomplete age control and their relevance to sedimentary paleomagnetism. Earth and Planetary Science Letters. 201:509-523.   10.1016/s0012-821x(02)00747-1   AbstractWebsite

A major limitation in the analysis of physical quantities measured from a stratigraphic core is incomplete knowledge of the depth to age relationship for the core. Records derived from diverse locations are often compared or combined to construct records that represent a global signal. Time series analysis of individual or combined records is commonly employed to seek quasi-periodic components or characterize the timescales of relevant physical processes. Assumptions that are frequently made in the approximation of depth to age relationships can have a dramatic and harmful effect on the spectral content of records from stratigraphic cores. A common procedure for estimating ages in a set of samples from a stratigraphic core is to assign, based on complementary data, the ages at a number of depths (tie points) and then assume a uniform accumulation rate between the tie points. Imprecisely dated or misidentified tie points and naturally varying accumulation rates give rise to discrepancies between the inferred and the actual ages of a sample. We develop a statistical model for age uncertainties in stratigraphic cores that treats the true, but in practice unknown, ages of core samples as random variables. For inaccuracies in the ages of tie points, we draw the error from a zero-mean normal distribution. For a variable accumulation rate, we require the actual ages of a sequence of samples to be monotonically increasing and the age errors to have the form of a Brownian bridge. That is, the errors are zero at the tie points. The actual ages are modeled by integrating a piecewise constant, randomly varying accumulation rate. In each case, our analysis yields closed form expressions for the expected value and variance of resulting errors in age at any depth in the core. By Monte Carlo simulation with plausible parameters, we find that age errors across a paleomagnetic record due to misdated tie points are likely of the same order as the tie point discrepancies. Those due to accumulation rate variations can be as large as 30 kyr, but are probably less than 10 kyr. We provide a method by which error estimates like these can be made for similar stratigraphic dating problems and apply our statistical model to an idealized marine sedimentary paleomagnetic record. Both types of errors severely degrade the spectral content of the inferred record. We quantify these effects using realistic tie point ages, their uncertainties and depositional parameters. (C) 2002 Elsevier Science B.V. All rights reserved.

Cronin, M, Tauxe L, Constable C, Selkin P, Pick T.  2001.  Noise in the quiet zone. Earth and Planetary Science Letters. 190:13-30.   10.1016/s0012-821x(01)00354-5   AbstractWebsite

We have carried out a detailed paleomagnetic investigation of two stratigraphically overlapping sections from the Scaglia Bianca Formation (similar to 85-89.5 Ma) in the Umbria-Marche area in central Italy. Sampling was conducted over 32 in and 7 in intervals at La Roccaccia and Furlo respectively. After AF cleaning the majority of specimens show the expected normal magnetic field orientation, however a number of specimens are directionally anomalous. Some of these deviant specimens are accompanied by apparent spikes or dips in normalized intensity. A detailed investigation of rock magnetics shows that most of these deviations are not a sign of excursionary geomagnetic field behavior, but rather correspond to specimens with distinct rock magnetic characteristics and are therefore rock magnetic 'noise'. Such specimens should not be interpreted as records of the geomagnetic field. Our experience suggests that detailed rock magnetic and magnetic fabric analysis should be done on all anomalous directions prior to interpreting them as geomagnetic field behavior. After elimination of rock magnetic noise in the Scaglia Bianca data sets, there is a high degree of agreement in direction and to a lesser extent relative intensity between correlative portions of the two sections. We therefore offer this data set as a robust record of geomagnetic field behavior during the 4.5 Myr interval represented by the La Roccaccia section. A statistical analysis of the relative intensity observations suggests that this period of the Cretaceous Normal Superchron is characterized by a normalized variability in paleointensity (standard deviation about 28% of the mean value) that is significantly lower than seen during the Oligocene over intervals in which reversals or tiny wiggles occur (typically about 50%). The directional stability results in virtual geomagnetic pole dispersion compatible with that found in volcanic rocks from around the same latitude and ranging in age from 80 to 110 Ma. (C) 2001 Elsevier Science B.V. All rights reserved.

Clement, BM, Constable CG.  1991.  Polarity Transitions, Excursions and Paleosecular Variation of the Earths Magnetic-Field. Reviews of Geophysics. 29:433-442. AbstractWebsite