Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
Constable, S, Constable C.  2004.  Observing geomagnetic induction in magnetic satellite measurements and associated implications for mantle conductivity. Geochemistry Geophysics Geosystems. 5   10.1029/2003gc000634   AbstractWebsite

Currents induced in Earth by temporal variations in the external magnetic field have long been used to probe mantle electrical conductivity, but almost exclusively from sparsely distributed land observatories. Satellite-borne magnetometers, such as flown on Magsat, Orsted, and Champ, offer the prospect of improved spatial coverage. The approach we have taken is to isolate induction by harmonic Dst ("disturbance storm time'') excitation of the magnetospheric ring current in satellite magnetic measurements: this is done by removing the magnetic contributions of the main (core) magnetic field, the crustal magnetic field, and ionospheric fields (cause of the daily variation) using Sabaka et al.' s [2000, 2002] CMP3 comprehensive model. The Dst signal is then clearly evident in the midlatitude satellite passes lower than 50 degrees geomagnetic latitude. At higher latitudes, auroral and field aligned currents contaminate the data. We fit the internal and external components of the Dst signal for each equatorial pass, exploiting the fact that the geometry for the internal and external components is different for the azimuthal and radial vector components. The resulting timeseries of internal and external field variations shows that the Dst signals for the dawn passes are half those of the dusk passes. The sum of equatorial external and internal components of the field averaged over dawn and dusk passes provides an excellent estimate for the Dst index, and may in fact be superior when used as a proxy for the purposes of removing induced and magnetospheric fields from satellite magnetic data. We call this estimate satellite Dst. Cross spectral analysis of the internal and external timeseries shows both greater power and higher coherence in the dusk data. We processed the transfer function between internal and external dusk timeseries to provide globally-averaged, frequency dependent impedances that agree well with independently derived estimates. We estimate Earth's radial electrical conductivity structure from these impedances using standard regularized inversion techniques. A near-surface conductor is required, of thickness less than 10 km with a conductivity-thickness product almost exactly that of an average Earth ocean. Inversions suggest that an increase in conductivity at 440 km depth, predicted by recent laboratory measurements on high pressure phases of olivine, is not favored by the data, although, as in previous studies, the 670 km discontinuity between the upper and lower mantle is associated with a two orders of magnitude jump in conductivity. A new feature in our inversions is a further increase in lower mantle conductivity at a depth of 1300 km. A global map of the internal (induced) component of the magnetic field provides a qualitative estimate of three-dimensional (3-D) variations in Earth electrical conductivity, demonstrating graphically that the satellite data are responsive to lateral variations in electrical conductivity caused by the continents and oceans.

Everett, ME, Constable S, Constable CG.  2003.  Effects of near-surface conductance on global satellite induction responses. Geophysical Journal International. 153:277-286.   10.1046/j.1365-246X.2003.01906.x   AbstractWebsite

A 3-D finite-element simulation of global electromagnetic induction is used to evaluate satellite responses in geomagnetic dipole coordinates for harmonic ring-current excitation of a three-layer mantle overlain by a realistic near-surface conductance distribution. Induced currents are modelled for lithospheric and asthenospheric upper-mantle conductivities in the range sigma= 10(-4) -0.1 S m(-1) . The magnetic scalar intensity B is calculated at a typical satellite altitude of 300 km. At short periods, T = 2 and 12 h, the induction signal owing to the near-surface conductance is large when a resistive upper mantle is present, but drops off with increasing mantle conductivity. At longer periods, T = 2 d, the near-surface induction signal is generally much smaller and nearly independent of upper-mantle conductivity. The near-surface induction signal is very sensitive to the electrical conductivity of the lithospheric mantle, but only moderately sensitive to that of the asthenospheric mantle. Induced currents are confined to the heterogeneous surface shell at periods of less than 2 h, and flow predominantly in the mantle at periods of longer than 2 d. In the intervening period range, induced currents are partitioned between the near-surface and the upper mantle. These results indicate the importance of carrying out a full 3-D analysis in the interpretation of satellite induction observations in the period range from hours to days.

McMillan, DG, Constable CG, Parker RL.  2002.  Limitations on stratigraphic analyses due to incomplete age control and their relevance to sedimentary paleomagnetism. Earth and Planetary Science Letters. 201:509-523.   10.1016/s0012-821x(02)00747-1   AbstractWebsite

A major limitation in the analysis of physical quantities measured from a stratigraphic core is incomplete knowledge of the depth to age relationship for the core. Records derived from diverse locations are often compared or combined to construct records that represent a global signal. Time series analysis of individual or combined records is commonly employed to seek quasi-periodic components or characterize the timescales of relevant physical processes. Assumptions that are frequently made in the approximation of depth to age relationships can have a dramatic and harmful effect on the spectral content of records from stratigraphic cores. A common procedure for estimating ages in a set of samples from a stratigraphic core is to assign, based on complementary data, the ages at a number of depths (tie points) and then assume a uniform accumulation rate between the tie points. Imprecisely dated or misidentified tie points and naturally varying accumulation rates give rise to discrepancies between the inferred and the actual ages of a sample. We develop a statistical model for age uncertainties in stratigraphic cores that treats the true, but in practice unknown, ages of core samples as random variables. For inaccuracies in the ages of tie points, we draw the error from a zero-mean normal distribution. For a variable accumulation rate, we require the actual ages of a sequence of samples to be monotonically increasing and the age errors to have the form of a Brownian bridge. That is, the errors are zero at the tie points. The actual ages are modeled by integrating a piecewise constant, randomly varying accumulation rate. In each case, our analysis yields closed form expressions for the expected value and variance of resulting errors in age at any depth in the core. By Monte Carlo simulation with plausible parameters, we find that age errors across a paleomagnetic record due to misdated tie points are likely of the same order as the tie point discrepancies. Those due to accumulation rate variations can be as large as 30 kyr, but are probably less than 10 kyr. We provide a method by which error estimates like these can be made for similar stratigraphic dating problems and apply our statistical model to an idealized marine sedimentary paleomagnetic record. Both types of errors severely degrade the spectral content of the inferred record. We quantify these effects using realistic tie point ages, their uncertainties and depositional parameters. (C) 2002 Elsevier Science B.V. All rights reserved.