Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
2006
Lawrence, KP, Constable CG, Johnson CL.  2006.  Paleosecular variation and the average geomagnetic field at +/- 20 degrees latitude. Geochemistry Geophysics Geosystems. 7   10.1029/2005gc001181   AbstractWebsite

[1] We assembled a new paleomagnetic directional data set from lava flows and thin dikes for four regions centered on +/-20 degrees latitude: Hawaii, Mexico, the South Pacific, and Reunion. We investigate geomagnetic field behavior over the past 5 Myr and address whether geographical differences are recorded by our data set. We include inclination data from other globally distributed sites with the +/-20 degrees data to determine the best fitting time-averaged field (TAF) for a two-parameter longitudinally symmetric (zonal) model. Values for our model parameters, the axial quadrupole and octupole terms, are 4% and 6% of the axial dipole, respectively. Our estimate of the quadrupole term is compatible with most previous studies of deviations from a geocentric axial dipole (GAD) field. Our estimated octupole term is larger than that from normal polarity continental and igneous rocks, and oceanic sediments, but consistent with that from reversed polarity continental and igneous rocks. The variance reduction compared with a GAD field is similar to 12%, and the remaining signal is attributed to paleosecular variation (PSV). We examine PSV at +/-20 degrees using virtual geomagnetic pole (VGP) dispersion and comparisons of directional distributions with simulations from two statistical models. Regionally, the Hawaii and Reunion data sets lack transitional magnetic directions and have similar inclination anomalies and VGP dispersion. In the Pacific hemisphere, Hawaii has a large inclination anomaly, and the South Pacific exhibits high PSV. The deviation of the TAF from a GAD contradicts earlier ideas of a "Pacific dipole window,'' and the strong regional PSV in the South Pacific contrasts with the generally low secular variation found on short timescales. The TAF and PSV at Hawaii and Reunion are distinct from values for the South Pacific and Mexico, demonstrating the need for time-averaged and paleosecular variation models that can describe nonzonal field structures. Investigations of zonal statistical PSV models reveal that recent models are incompatible with the empirical +/-20 degrees directional distributions and cannot fit the data by simply adjusting relative variance contributions to the PSV. The +/-20 degrees latitude data set also suggests less PSV and smaller persistent deviations from a geocentric axial dipole field during the Brunhes.

1998
Johnson, CL, Wijbrans JR, Constable CG, Gee J, Staudigel H, Tauxe L, Forjaz VH, Salgueiro M.  1998.  Ar-40/Ar-39 ages and paleomagnetism of Sao Miguel lavas, Azores. Earth and Planetary Science Letters. 160:637-649.   10.1016/s0012-821x(98)00117-4   AbstractWebsite

We present new Ar-40/Ar-39 ages and paleomagnetic data for Sao Miguel island, Azores. Paleomagnetic samples were obtained for 34 flows and one dike; successful mean paleomagnetic directions were obtained for 28 of these 35 sites. Ar-40/Ar-39 age determinations on 12 flows from the Nordeste complex were attempted successfully: ages obtained are between 0.78 Ma and 0.88 Ma, in contrast to published K-Ar ages of 1 Ma to 4 Ma. Our radiometric ages are consistent with the reverse polarity paleomagnetic field directions, and indicate that the entire exposed part of the Nordeste complex is of a late Matuyama age. The duration of volcanism across Sao Miguel is significantly less than previously believed, which has important implications for regional melt generation processes, and temporal sampling of the geomagnetic field. Observed stable isotope and trace element trends across the island can be explained, at least in part, by communication between different magma source regions at depth. The Ar-40/Ar-39 ages indicate that our normal polarity paleomagnetic data sample at least 0.1 Myr (0-0.1 Ma) and up to 0.78 Myr (0-0.78 Ma) of paleosecular variation and our reverse polarity data sample approximately 0.1 Myr (0.78-0.88 Ma) of paleosecular variation. Our results demonstrate that precise radiometric dating of numerous flows sampled is essential to accurate inferences of long-term geomagnetic field behavior. Negative inclination anomalies are observed for both the normal and reverse polarity time-averaged field. Within the data uncertainties, normal and reverse polarity field directions are antipodal, but the reverse polarity field shows a significant deviation from a geocentric axial dipole direction. (C) 1998 Elsevier Science B.V. All rights reserved.