Export 20 results:
Sort by: Author Title Type [ Year  (Desc)]
Avery, MS, Gee JS, Constable CG.  2017.  Asymmetry in growth and decay of the geomagnetic dipole revealed in seafloor magnetization. Earth and Planetary Science Letters. 467:79-88.   10.1016/j.epsl.2017.03.020   AbstractWebsite

Geomagnetic intensity fluctuations provide important constraints on time-scales associated with dynamical processes in the outer core. PADM2M is a reconstructed time series of the 0-2 Ma axial dipole moment (ADM). After smoothing to reject high frequency variations PADM2M's average growth rate is larger than its decay rate. The observed asymmetry in rates of change is compatible with longer term diffusive decay of the ADM balanced by advective growth on shorter time scales, and provides a potentially useful diagnostic for evaluating numerical geodynamo simulations. We re-analyze the PADM2M record using improved low-pass filtering to identify asymmetry and quantify its uncertainty via bootstrap methods before applying the new methodology to other kinds of records. Asymmetry in distribution of axial dipole moment derivatives is quantified using the geomagnetic skewness coefficient, sg. A positive value indicates the distribution has a longer positive tail and the average growth rate is greater than the average decay rate. The original asymmetry noted by Ziegler and Constable (2011) is significant and does not depend on the specifics of the analysis. A long-term record of geomagnetic intensity should also be preserved in the thermoremanent magnetization of oceanic crust recovered by inversion of stacked profiles of marine magnetic anomalies. These provide an independent means of verifying the asymmetry seen in PADM2M. We examine three near bottom surveys: a 0 to 780 ka record from the East Pacific Rise at 19 degrees S, a 0 to 5.2 Ma record from the Pacific Antarctic Ridge at 51 degrees S, and a chron C4Ar-C5r (9.3-11.2 Ma) record from the NE Pacific. All three records show an asymmetry similar in sense to PADM2M with geomagnetic skewness coefficients, s(g) > 0. Results from PADM2M and C4Ar-C5r are most robust, reflecting the higher quality of these geomagnetic records. Our results confirm that marine magnetic anomalies can carry a record of the asymmetric geomagnetic field behavior first found for 0-2 Ma in PADM2M, and show that it was also present during the earlier time interval from 9.3-11.2 Ma. (C) 2017 The Authors. Published by Elsevier B.V.

Panovska, S, Constable CG.  2017.  An activity index for geomagnetic paleosecular variation, excursions, and reversals. Geochemistry Geophysics Geosystems. 18:1366-1375.   10.1002/2016gc006668   AbstractWebsite

Magnetic indices provide quantitative measures of space weather phenomena that are widely used by researchers in geomagnetism. We introduce an index focused on the internally generated field that can be used to evaluate long term variations or climatology of modern and paleomagnetic secular variation, including geomagnetic excursions, polarity reversals, and changes in reversal rate. The paleosecular variation index, P-i, represents instantaneous or average deviation from a geocentric axial dipole field using normalized ratios of virtual geomagnetic pole colatitude and virtual dipole moment. The activity level of the index, sigma P-i, provides a measure of field stability through the temporal standard deviation of P-i. P-i can be calculated on a global grid from geomagnetic field models to reveal large scale geographic variations in field structure. It can be determined for individual time series, or averaged at local, regional, and global scales to detect long term changes in geomagnetic activity, identify excursions, and transitional field behavior. For recent field models, P-i ranges from less than 0.05 to 0.30. Conventional definitions for geomagnetic excursions are characterized by P-i exceeding 0.5. Strong field intensities are associated with low P-i unless they are accompanied by large deviations from axial dipole field directions. sigma P-i provides a measure of geomagnetic stability that is modulated by the level of PSV or frequency of excursional activity and reversal rate. We demonstrate uses of P-i for paleomagnetic observations and field models and show how it could be used to assess whether numerical simulations of the geodynamo exhibit Earth-like properties.

Panovska, S, Korte M, Finlay CC, Constable CG.  2015.  Limitations in paleomagnetic data and modelling techniques and their impact on Holocene geomagnetic field models. Geophysical Journal International. 202:402-418.   10.1093/gji/ggv137   AbstractWebsite

Characterization of geomagnetic field behaviour on timescales of centuries to millennia is necessary to understand the mechanisms that sustain the geodynamo and drive its evolution. As Holocene paleomagnetic and archeomagnetic data have become more abundant, strategies for regularized inversion of modern field data have been adapted to produce numerous time-varying global field models. We evaluate the effectiveness of several approaches to inversion and data handling, by assessing both global and regional properties of the resulting models. Global Holocene field models cannot resolve Southern hemisphere regional field variations without the use of sediments. A standard data set is used to construct multiple models using two different strategies for relative paleointensity calibration and declination orientation and a selection of starting models in the inversion procedure. When data uncertainties are considered, the results are similar overall regardless of whether we use iterative calibration and reorientation, or co-estimation of the calibration and orientation parameters as part of the inversion procedure. In each case the quality of the starting model used for initial relative paleointensity calibration and declination orientation is crucial and must be based on the best absolute information available. Without adequate initial calibration the morphology of dipole moment variations can be recovered but its absolute value will be correlated with the initial intensity calibrations, an effect that might be mitigated by ensuring an appropriate fit to enough high quality absolute intensity data with low uncertainties. The declination reorientation mainly impacts regional field structure and in the presence of non-zonal fields will result in a non-zero local average. The importance of declination orientation is highlighted by inconsistencies in the West Pacific and Australian sediment records in CALS10k.1b model. Great care must also be taken to assess uncertainties associated with both paleomagnetic and age data and to evaluate the effects of poor data distribution. New consistently allocated uncertainty estimates for sediment paleomagnetic records highlight the importance of adequate uncertainties in the inversion process, as they determine the relative weighting among the data and overall normalized misfit levels which in turn influence the complexity of the inferred field models. Residual distributions suggest that the most appropriate misfit measure is the L-1 norm (minimum absolute deviation) rather than L-2 (least squares), but this seems to have relatively minor impact on the overall results. For future Holocene field modelling we see a need for comprehensive methods to assess uncertainty in individual archeomagnetic data so that these data or models derived from them can be used for reliable initial relative paleointensity calibration and declination orientation in sediments. More work will be needed to assess whether co-estimation or an iterative approach to inversion is more efficient overall. This would be facilitated by realistic and globally consistent data and age uncertainties from the paleomagnetic community.

Cromwell, G, Constable CG, Staudigel H, Tauxe L, Gans P.  2013.  Revised and updated paleomagnetic results from Costa Rica. Geochemistry Geophysics Geosystems. 14:3379-3388.   10.1002/ggge.20199   AbstractWebsite

Paleomagnetic results from globally distributed lava flows have been collected and analyzed under the time-averaged field initiative (TAFI), a multi-institutional collaboration started in 1996 and designed to improve the geographic and temporal coverage of the 0-5 Ma paleomagnetic database for studying both the time-averaged field and its very long-term secular variations. Paleomagnetic samples were collected from 35 volcanic units, either lava flows or ignimbrites, in Costa Rica in December 1998 and February 2000 from the Cordilleras Central and Guanacaste, the underlying Canas, Liberia and Bagaces formations and from Volcano Arenal. Age estimates range from approximately 40 ka to slightly over 6 Ma. Although initial results from these sites were used in a global synthesis of TAFI data by Johnson et al. (2008), a full description of methodology was not presented. This paper documents the definitive collection of results comprising 28 paleomagnetic directions (24 normal, 4 reversed), with enhanced precision and new geological interpretations, adding two paleointensity estimates and 19 correlated Ar-40/Ar-39 radiometric ages. The average field direction is consistent with that of a geocentric axial dipole and dispersion of virtual geomagnetic poles (17.34.6 degrees) is in general agreement with predictions from several statistical paleosecular variation models. Paleointensity estimates from two sites give an average field strength of 26.3 T and a virtual axial dipole moment of 65 ZAm(2). The definitive results provide a useful augmentation of the global database for the longer term goal of developing new statistical descriptions of paleomagnetic field behavior.

Cromwell, G, Tauxe L, Staudigel H, Constable CG, Koppers AAP, Pedersen RB.  2013.  In search of long-term hemispheric asymmetry in the geomagnetic field : Results from high northern latitudes. Geochemistry Geophysics Geosystems. 14:3234-3249.   10.1002/ggge.20174   AbstractWebsite

Investigations of the behavior of the geomagnetic field on geological timescales rely on globally distributed data sets from dated lava flows. We present the first suitable data from the Arctic region, comprising 37 paleomagnetic directions from Jan Mayen (71 degrees N, 0.2-461 ka) and Spitsbergen (79 degrees N, 1-9.2 Ma) and five paleointensity results. Dispersion of the Arctic virtual geomagnetic poles over the last 2 Ma (27.34.0 degrees) is significantly lower than that from published Antarctic data sets (32.15.0 degrees). Arctic average virtual axial dipole moment (76.824.3 ZAm(2)) is high in comparison to Antarctica over the same time interval (34.88.2 ZAm(2)), although the data are still too sparse in the Arctic to be definitive. These data support a long-lived hemispheric asymmetry of the magnetic field, contrasting higher, more stable fields in the north with lower average strength and more variable field directions in the south. Such features require significant non-axial-dipole contributions over 10(5)-10(6) years.

Smith-Boughner, LT, Ziegler LB, Constable CG.  2011.  Changing spectrum of geomagnetic intensity variations in a fragmented 12 My sediment record from the Oligocene. Physics of the Earth and Planetary Interiors. 188:260-269.   10.1016/j.pepi.2011.07.011   AbstractWebsite

Time series of relative geomagnetic paleointensity variations derived from marine sediments can be calibrated using absolute data derived from igneous materials. The resulting records may be suitable for spectral analysis of geomagnetic dipole variations. This work re-evaluates the 12 My (22.74-34.77 Ma) sediment record from Deep Sea Drilling Project Leg 73, Site 522, that is a key data set for determining the paleomagnetic power spectrum in the frequency range 1-100 My(-1). The 12 My record is marred by uneven sampling, with the interval between samples ranging from 1 to 640 ky, and contains several gaps that are considered too long to interpolate. The relative intensity data are calibrated using 129 globally distributed absolute paleointensity data from the same time interval. The power spectrum of the resulting time series is estimated using direct multi-taper spectral estimation with prolate data tapers adapted to deal with missing sections in the time series. The longest record available for analysis is thereby extended from 5.3 to 12 My. The new paleomagnetic power spectrum confirms the presence of a broad spectral peak at around 8 My(-1) for the early Oligocene and uncovers a peak around 2.5 My(-1) in the late Oligocene. Both peaks may be linked to tiny wiggles in marine magnetic anomalies. The new analysis unambiguously verifies that there is lower overall power in the younger part of the record, where the reversal process appears to dominate the power spectrum of the paleosecular variation. A comparison of the late Oligocene spectrum with that of PADM2M, a model of paleomagnetic axial dipole variations for 0-2 Ma, reveals some broad similarities; both time periods have similar power levels and a reversal rate of 4 My(-1). During the early Oligocene the reversal rate is about a factor of two lower, the field strength is higher, and the secular variation is stronger, suggesting that a strong magnetic field inhibits reversals but produces more variability in field strength. (C) 2011 Elsevier B.V. All rights reserved.

Constable, CG.  2011.  Modelling the geomagnetic field from syntheses of paleomagnetic data. Physics of the Earth and Planetary Interiors. 187:109-117.   10.1016/j.pepi.2011.05.004   AbstractWebsite

This review examines results from time-varying geomagnetic field models that span several thousand years, and from variations in dipole moment strength up to million year time scales. For the past 400 years, twin magnetic flux lobes bordering the inner core tangent cylinder in both northern and southern hemispheres dominate the geomagnetic field and appear more or less fixed in location. In contrast, the millennial scale view shows that such features are quite mobile and subject to morphological changes on time scales of a few centuries to a thousand years, possibly reflecting large scale reorganization of core flow. The lobes rarely venture into the Pacific hemisphere, and average fields over various time scales generally reveal two or three sets of lobes, of diminished amplitude. Thus millennial scale models are suggestive of thermal core-mantle coupling generating a weak bias in the average field rather than a strong inhibition of large scale field changes. The recovery of variations in dipole moment on million year time scales allows frequency domain analyses to search for characteristic time scales for core dynamics that might be associated with excursion and reversal rate, time taken for reversals, or any signs of control by Earth's orbital parameters. The spectrum is characteristically red for the time interval 0-160 Ma, suggesting non-stationarity associated with average reversal rate changes, probably reflecting the impact of superchrons and a continually evolving core. Distinct regimes of power law decay with frequency may reflect different physical processes contributing to the secular variation. Evidence for non-stationarity at shorter time-scales is also present in dipole moment variations over 0-2 Ma with average growth rate faster than the decay process. Rates of change of dipole moment and rapid local field variations found in the paleomagnetic record are evaluated in the context of the 400 year historical record and the spectrum of geomagnetic variations for 0-160 Ma. (C) 2011 Elsevier B.V. All rights reserved.

Korte, M, Donadini F, Constable CG.  2009.  Geomagnetic field for 0-3 ka: 2. A new series of time-varying global models. Geochemistry Geophysics Geosystems. 10   10.1029/2008gc002297   AbstractWebsite

Steadily increasing numbers of archeomagnetic and paleomagnetic data for the Holocene have allowed development of temporally continuous global spherical harmonic models of the geomagnetic field extending present and historical global descriptions of magnetic field evolution. The current work uses various subsets of improved data compilations, details of which are given in a companion paper by Donadini et al. (2009), and minor modifications of standard modeling strategies (using temporally and spatially regularized inversion of the data and cubic spline parameterizations for temporal variations) to produce five models with enhanced spatial and temporal resolution for 0-3 ka. Spurious end effects present in earlier models are eliminated by enforcing large-scale agreement with the gufm1 historical model for 1650-1990 A.D. and by extending the model range to accommodate data older than 3 ka. Age errors are not considered as a contribution to data uncertainties but are included along with data uncertainties in an investigation of statistical uncertainty estimates for the models using parametric bootstrap resampling techniques. We find common features but also significant differences among the various models, indicating intrinsic uncertainties in global models based on the currently available Holocene data. Model CALS3k.3 based on all available archeomagnetic and sediment data, without a priori quality selection, currently constitutes the best global representation of the past field. The new models have slightly higher dipole moments than our previous models. Virtual axial dipole moments (VADMs) calculated directly from the data are in good agreement with all corresponding model predictions of VADMs. These are always higher than the spherical harmonic dipole moment, indicating the limitations of using VADMs as a measure of geomagnetic dipole moments.

Lawrence, KP, Tauxe L, Staudigel H, Constable CG, Koppers A, McIntosh W, Johnson CL.  2009.  Paleomagnetic field properties at high southern latitude. Geochemistry Geophysics Geosystems. 10   10.1029/2008gc002072   AbstractWebsite

Statistical analyses of paleomagnetic data from lava flows are used to study geomagnetic field behavior on million year timescales. Previous paleomagnetic studies have lacked high-latitude measurements necessary to investigate the persistence of geomagnetic anomalies observed in the recent and historical field and replicated in some numerical geodynamo simulations. These simulations suggest that reduced convective flow inside the tangent cylinder may affect the magnetic field at high latitude, whereas lower-latitude observations are expressions of columnar/helical flow outside the tangent cylinder. This paper presents new paleointensity and paleodirectional data from 100 volcanic sites in the Erebus Volcanic Province (EVP), Antarctica, and 21 new age determinations by the (40)Ar/(39)Ar incremental heating method. The new EVP data are combined with previously published paleomagnetic and geochronological results, providing 133 sites, 91 having radioisotopic dates. Modified Thellier-Thellier paleointensity estimates are reported for 47 sites (37 have dates). Ages for the combined data set span 0.03 to 13.42 Ma. The 125 high-quality EVP directional data selected from the merged data set have a non-Fisherian distribution and a mean direction with an inclination anomaly of similar to 3 degrees, but 95% confidence limits include the prediction from a geocentric axial dipole. Virtual geomagnetic pole (VGP) dispersions for Brunhes, Matuyama, and the combined 0-5 Ma data set are consistently high compared with values from middle-to low-latitude regions regardless of the criterion used to determine transitional fields. With VGP latitude cut off at 45 degrees, the dispersion (23.9 +/-2.1 degrees) for the combined 0-5 Ma EVP data set is consistent with earlier high-latitude data and paleosecular variation (PSV) in Model G but not with some more recent statistical PSV models. Mean EVP paleointensity of 31.5 +/-2.4 mu T, derived from 41 high-quality sites, is about half the current value at McMurdo (similar to 63 mu T). The result is essentially independent of data selection criteria. High VGP dispersion and low-intensity values support the global observation of anticorrelation between directional variability and field strength. Simulations of time-varying dipole strength show that uneven temporal sampling may bias the mean EVP intensity estimate, but the possibility of persistently anomalous field behavior at high latitude cannot be excluded.

Ziegler, LB, Constable CG, Johnson CL.  2008.  Testing the robustness and limitations of 0-1 Ma absolute paleointensity data. Physics of the Earth and Planetary Interiors. 170:34-45.   10.1016/j.pepi.2008.07.027   AbstractWebsite

Absolute paleomagnetic field intensity data derived from thermally magnetized lavas and archeological objects provide information about past geomagnetic field behavior, but the average field strength, its variability, and the expected statistical distribution of these observations remain uncertain despite growing data sets. We investigate these issues for the 0-1 Ma field using data compiled in Perrin and Schnepp [Perrin, M., Schnepp, E., 2004. IAGA paleointensity database: distribution and quality of the data set. Phys. Earth Planet. Int. 147, 255-267], 1124 samples of heterogeneous quality and with restricted temporal and spatial coverage. We accommodate variable spatial sampling by using virtual axial dipole moments (VADM) in our analyses. Uneven temporal sampling results in biased estimates for the mean field and its statistical distribution. We correct for these effects using a bootstrap technique, and find an average VADM of 7.26 +/- 0.14 x 10(22) A m(2). The associated statistical distribution appears bimodal with a subsidiary peak at approximately 5 x 10(22) A m(2). We evaluate a range of potential sources for this behavior. We find no visible evidence for contamination by poor quality data when considering author-supplied uncertainties in the 0-1 Ma data set. The influence of material type is assessed using independent data compilations to compare Holocene data from lava flows, submarine basaltic glass (SBG), and archeological objects. The comparison to SBG is inconclusive because of dating issues, but paleointensity estimates from lavas are on average about 10% higher than for archeological materials and show greater dispersion. Only limited tests of geographic sampling bias are possible. We compare the large number of 0-0.55 Ma Hawaiian data to the global data set with no definitive results. The possibility of over-representation of typically low intensity excursional data is discounted because exclusion of transitional data still leaves a bimodal distribution. No direct test has allowed us to rule out the idea that the observed pdf results from a mixture of two distinct distributions corresponding to two identifiable intensity states for the magnetic field. We investigate an alternative possibility that we were simply unable to recover a hypothetically smoother underlying distribution with a time span of only 1 Myr and the resolution of the current data set. Simulations from a stochastic model based on the geomagnetic field spectrum demonstrate that long period intensity variations can have a strong impact on the observed distributions and could plausibly explain the apparent bimodality. Our 0-1 Ma distribution of VADMs is consistent with that obtained for average relative paleointensity records derived from sediments. (C) 2008 Elsevier B.V. All rights reserved.

Genevey, A, Gallet Y, Constable CG, Korte M, Hulot G.  2008.  ArcheoInt: An upgraded compilation of geomagnetic field intensity data for the past ten millennia and its application to the recovery of the past dipole moment. Geochemistry Geophysics Geosystems. 9   10.1029/2007gc001881   AbstractWebsite

This paper presents a compilation of intensity data covering the past 10 millennia (ArcheoInt). This compilation, which upgrades the one of Korte et al. (2005), contains 3648 data and incorporates additional intensity and directional data sets. A large majority of these data (similar to 87%) were acquired on archeological artifacts, and the remaining similar to 13% correspond to data obtained from volcanic products. The present compilation also includes important metadata for evaluating the intensity data quality and providing a foundation to guide improved selection criteria. We show that similar to 50% of the data set fulfill reasonable reliability standards which take into account the anisotropic nature of most studied objects (potsherds), the stability of the magnetization, and the data dispersion. The temporal and geographical distributions of this sub-data set are similar to those of the main data set, with similar to 72% of the data dated from the past three millennia and similar to 76% obtained from western Eurasia. Approximately half of the selected intensity data are associated with at least an inclination value. To constrain the axial and full dipole evolution over the past three millennia requires that we avoid any overrepresentation of the western Eurasian data. We introduce a first-order regional weighting scheme based on the definition of eight widely distributed regions of 30 degrees width within which the selected data are numerous enough. The regional curves of virtual axial dipole moments (VADM) and of mixed VADM-virtual dipole moments (VDM) averaged over sliding windows of 200 years and 500 years testify for strong contributions from either equatorial dipole or nondipole components. The computation of global VADM and mixed VADM/VDM variation curves, assuming an equal weight for each region, yields a dipole evolution marked by a distinct minimum around 0 B.C./A.D. followed by a maximum around the third-fourth century A. D. A second minimum is present around the eighth century A. D. This variation pattern is compatible with the one deduced from earlier, more sophisticated analysis based on the inversion of both intensity and directional data. In particular, there is a good agreement among all VADMs and dipole moment estimates over the historical period, which further strengthens the validity of our weighting scheme.

Constable, C, Korte M.  2006.  Is Earth's magnetic field reversing? Earth and Planetary Science Letters. 246:1-16.   10.1016/j.epsl.2006.03.038   AbstractWebsite

Earth's dipole field has been diminishing in strength since the first systematic observations of field intensity were made in the mid nineteenth century. This has led to speculation that the geomagnetic field might now be in the early stages of a reversal. In the longer term context of paleomagnetic observations it is found that for the current reversal rate and expected statistical variability in polarity interval length an interval as long as the ongoing 0.78 Myr Brunhes polarity interval is to be expected with a probability of less than 0.15, and the preferred probability estimates range from 0.06 to 0.08. These rather low odds might be used to infer that the next reversal is overdue, but the assessment is limited by the statistical treatment of reversals as point processes. Recent paleofield observations combined with insights derived from field modeling and numerical geodynamo simulations suggest that a reversal is not imminent. The current value of the dipole moment remains high compared with the average throughout the ongoing 0.78 Myr Brunhes polarity interval; the present rate of change in Earth's dipole strength is not anomalous compared with rates of change for the past 7 kyr; furthermore there is evidence that the field has been stronger on average during the Brunhes than for the past 160 Ma, and that high average field values are associated with longer polarity chrons. There is no evidence from recent millennial scale time-varying paleofield models to indicate that the field is entering a polarity transition. Nevertheless, it remains a reasonable supposition that the magnetic field will eventually reverse even though the time scale is unpredictable. A more immediate concern is that ongoing secular variation in the magnetic field may be expected to moderate the current high dipole strength on centennial to millennial time scales: it would not be surprising if it dropped substantially, returning closer to the average without necessarily reversing. This could have important consequences for space weather, and also highlights the need for improved understanding of the impact of geomagnetic field strength on the production rates of cosmogenic isotopes that are used to estimate past solar variability. (c) 2006 Elsevier B.V. All rights reserved.

Constable, C, Johnson C.  2005.  A paleomagnetic power spectrum. Physics of the Earth and Planetary Interiors. 153:61-73.   10.1016/j.pepi.2005.03.015   AbstractWebsite

We construct a power spectrum of geomagnetic dipole moment variations or their proxies that spans the period range from some tens of million down to about 100 years. Empirical estimates of the spectrum are derived from the magnetostratigraphic time scale, from marine sediment relative paleointensity records, and from a time varying paleomagnetic field model for the past 7 kyr. The spectrum has the most power at long periods, reflecting the influence of geomagnetic reversals and in general decreases with increasing frequency (decreasing period). The empirical spectrum is compared with predictions from simple models. Discrepancies between the observed and predicted spectra are discussed in the context of: (i) changes in reversal rate, (ii) overall average reversal rate, (iii) cryptochrons, (iv) the time taken for a reversal to occur, and (v) long term paleosecular variations and average estimates of the field strength and variance from other sources. (c) 2005 Elsevier B.V. All rights reserved.

Korte, M, Constable CG.  2005.  The geomagnetic dipole moment over the last 7000 years - new results from a global model. Earth and Planetary Science Letters. 236:348-358.   10.1016/j.epsl.2004.12.031   AbstractWebsite

Evolution of the geomagnetic field's dipole strength is studied by geomagnetists from global spherical harmonic models and by paleomagnetists using virtual (axial) dipole moments (VDM, VADM). Based on a recently published global model of the past 7000 yr we study whether these three dipole moment descriptions can be considered equivalent, and compare the results to previous global VADM studies and recent global model dipole moments. We conclude that VADM and VDM results averaged over centennial and millennial time scales are systematically higher than the true dipole moment by about 19%. The current dipole decrease is part of a process that has been going on for about 1700 yr. The average rate of decrease is lower than the current one, but has varied significantly so that the current rate cannot be regarded as exceptional. (c) 2005 Elsevier B.V. All rights reserved.

Korte, M, Genevey A, Constable CG, Frank U, Schnepp E.  2005.  Continuous geomagnetic field models for the past 7 millennia: 1. A new global data compilation. Geochemistry Geophysics Geosystems. 6   10.1029/2004gc000800   AbstractWebsite

A global data set of archeomagnetic and paleomagnetic data covering the past 7000 years has been compiled. It consists of 16,085 results of inclination, 13,080 of declination, and 3188 of intensity for the time span 5000 BC to 1950 AD. Declination and inclination data come partly from existing databases and partly from original literature. A new global compilation of intensity data for the millennial scale is included. Data and dating uncertainties are discussed as we attempted to obtain an internally coherent data set. The global distribution of the data is very inhomogeneous in both time and space. All the data are compared to predictions from the previous 3000 year global model, CALS3K.1. This collection of data will be useful for global secular variation studies and geomagnetic field modeling, although southern hemisphere data are still underrepresented. In particular, we will use it in a further study to update and extend the existing global model, CALS3K.1. The huge increase in data compared to the previous compilation will result in significant changes from current models. As we might have missed some suitable data, we encourage the reader to notify us about any data that have not been included yet and might fit in, as improving our global millennial scale models remains our aim for the future.

Korte, M, Constable CG.  2005.  Continuous geomagnetic field models for the past 7 millennia: 2. CALS7K. Geochemistry Geophysics Geosystems. 6   10.1029/2004gc000801   AbstractWebsite

We present two continuous global geomagnetic field models for recent millennia: CALS3K.2, covering the past 3000 years, and CALS7K.2, covering 7000 years from 5000 BC to 1950 AD. The models were determined by regularized least squares inversion of archeomagnetic and paleomagnetic data using spherical harmonics in space and cubic B splines in time. They are derived from a greatly increased number of paleomagnetic directional data, compared to previous efforts, and for the first time a significant amount of archeointensity data is used in this kind of global model, allowing the determination of evolution of geomagnetic dipole strength. While data accuracy and dating uncertainties remain a limitation, reliable low-resolution global models can be obtained. The results agree well with previous results from virtual axial dipole moment (VADM) studies from archeomagnetic intensity data apart from a systematic offset in strength. A comparison of model predictions with the previous 3000 year model, CALS3K.1, gives general agreement but also some significant differences particularly for the early epochs. The new models suggest that the prominent two northern hemisphere flux lobes are more stationary than CALS3K.1 implied, extending considerably the time span of stationary flux lobes observed in historical models. Between 5000 BC and 2000 BC there are time intervals of weak dipole moment where dipole power is exceeded by low-degree nondipole power at the core-mantle boundary.

Love, JJ, Constable CG.  2003.  Gaussian statistics for palaeomagnetic vectors. Geophysical Journal International. 152:515-565.   10.1046/j.1365-246X.2003.01858.x   AbstractWebsite

With the aim of treating the statistics of palaeomagnetic directions and intensities jointly and consistently, we represent the mean and the variance of palaeomagnetic vectors, at a particular site and of a particular polarity, by a probability density function in a Cartesian three-space of orthogonal magnetic-field components consisting of a single (unimodal) non-zero mean, spherically-symmetrical (isotropic) Gaussian function. For palaeomagnetic data of mixed polarities, we consider a bimodal distribution consisting of a pair of such symmetrical Gaussian functions, with equal, but opposite, means and equal variances. For both the Gaussian and bi-Gaussian distributions, and in the spherical three-space of intensity, inclination, and declination, we obtain analytical expressions for the marginal density functions, the cumulative distributions, and the expected values and variances for each spherical coordinate (including the angle with respect to the axis of symmetry of the distributions). The mathematical expressions for the intensity and off-axis angle are closed-form and especially manageable, with the intensity distribution being Rayleigh-Rician. In the limit of small relative vectorial dispersion, the Gaussian (bi-Gaussian) directional distribution approaches a Fisher (Bingham) distribution and the intensity distribution approaches a normal distribution. In the opposite limit of large relative vectorial dispersion, the directional distributions approach a spherically-uniform distribution and the intensity distribution approaches a Maxwell distribution. We quantify biases in estimating the properties of the vector field resulting from the use of simple arithmetic averages, such as estimates of the intensity or the inclination of the mean vector, or the variances of these quantities. With the statistical framework developed here and using the maximum-likelihood method, which gives unbiased estimates in the limit of large data numbers, we demonstrate how to formulate the inverse problem, and how to estimate the mean and variance of the magnetic vector field, even when the data consist of mixed combinations of directions and intensities. We examine palaeomagnetic secular-variation data from Hawaii and Reunion, and although these two sites are on almost opposite latitudes, we find significant differences in the mean vector and differences in the local vectorial variances, with the Hawaiian data being particularly anisotropic. These observations are inconsistent with a description of the mean field as being a simple geocentric axial dipole and with secular variation being statistically symmetrical with respect to reflection through the equatorial plane. Finally, our analysis of palaeomagnetic acquisition data from the 1960 Kilauea flow in Hawaii and the Holocene Xitle flow in Mexico, is consistent with the widely held suspicion that directional data are more accurate than intensity data.

Constable, CG, Johnson CL.  1999.  Anisotropic paleosecular variation models: implications for geomagnetic field observables. Physics of the Earth and Planetary Interiors. 115:35-51.   10.1016/s0031-9201(99)00065-5   AbstractWebsite

We present a family of statistical models for paleosecular variation (PSV) of the geomagnetic field that are compatible with paleodirectional and paleointensity variations in lava flows sampling the last 5 Ma, and explore what paleomagnetic observables might be used to discriminate among the various family members. We distinguish statistical models with axial anisotropy, which provide a suitable description for an earth with homogeneous boundary conditions at the core-mantle interface from those with more general anisotropy corresponding to geographically heterogeneous boundary conditions. The models revise and extend earlier ones, which are themselves descendants of CP88, devised by Constable and Parker [Constable, C.G., Parker, R.L., 1988. Statistics of the geomagnetic secular variation for the past 5 m.y. J. Geophys, Res. 93, 11569-11581]. In CP88, secular variation is described by statistical variability of each Gauss coefficient in a spherical harmonic description of the geomagnetic field, with each coefficient treated as a normally distributed random variable: the Gauss coefficients of the non-dipole part of the field exhibit isotropic variability, and the variances are derived from the present field spatial power spectrum. The dipole terms have a special status in CP88, with a non-zero mean for the axial-dipole, and lower variance than predicted from the spatial power spectrum. All non-dipole terms have zero mean except the axial-quadrupole. CP88 is untenable for two reasons: it fails to predict the observed geographic dependence of directional variability in the magnetic field, and it grossly underpredicts the variance in paleointensity data. The new models incorporate large variance in the axial-dipole, and in the non-axial-quadrupole Gauss coefficients, g1/2: and h1/2:. The resulting variance in paleomagnetic observables depends only on latitude (zonal models), unless the variance in h1/2: is different from that in g1/2 (non-zonal models). Non-zonal (longitudinal) variations in PSV, such as the flux lobes seen in the historical magnetic field, are simulated using the non-zonal models. Both the zonal and non-zonal models fit summary statistics of the present dataset. We investigate the influence of persistent non-zonal influences in PSV on various paleomagnetic observables. It is shown that virtual geomagnetic pole (VGP) dispersion is rather insensitive to longitudinal variations in structure of PSV, and that inclination dispersion has the potential to be more informative given the right site distribution. There is also the possibility of using paleointensity and geographic variations in the frequency of occurrence of excursional directions to identify appropriate PSV models. (C) 1999 Elsevier Science B.V. All rights reserved.

Constable, CG, Tauxe L, Parker RL.  1998.  Analysis of 11 Myr of geomagnetic intensity variation. Journal of Geophysical Research-Solid Earth. 103:17735-17748.   10.1029/98jb01519   AbstractWebsite

We have conducted a detailed exploratory analysis of an II million year long almost continuous record of relative geomagnetic paleointensity from a sediment core acquired on Deep Sea Drilling Project Leg 73, at Site 522 in the South Atlantic. We assess the quality of the paleointensity record using spectral methods and conclude that the relative intensity record is minimally influenced by climate variations. Isothermal remanence is shown to be the most effective normalizer for these data, although both susceptibility and anhysteretic remanence are also adequate. Statistical analysis shows that the paleointensity variations follow a gamma distribution, and are compatible with predictions from modified paleosecular variation models and global absolute paleointensity data. When subdivided by polarity interval, the variability in paleointensity is proportional to the average, and further, the average is weakly correlated with interval length. Spectral estimates for times from 28.77 until 22.74 Ma, when the reversal rate is about 4 Myr(-1), are compatible with a Poisson model in which the spectrum of intensity variations is dominated by the reversal process in the frequency range 1-50 Mgr(-1) In contrast, between 34.7 and 29.4 Ma, when the reversal rate is about 1.6 Myr(-1), the spectra indicate a different secular variation regime. The magnetic field is stronger, and more variable, and a strong peak in the spectrum occurs at about 8 Myr(-1). This peak magi be a reflection of the same signal as recorded by the small variations known as tiny wiggles seen in marine magnetic anomaly profiles.

Hartl, P, Tauxe L, Constable C.  1993.  Early Oligocene Geomatnetic-Field Behavior From Deep-Sea Drilling Project Site-522. Journal of Geophysical Research-Solid Earth. 98:19649-19665.   10.1029/93jb02019   AbstractWebsite

Hydraulic piston coring operations at Deep Sea Drillng Project site 522 in the South Atlantic retrieved an unusually continuous section of late Eocene to late Oligocene pelagic sediments, which we sampled at 3-4 cm intervals (approximately 3-5 kyr). Natural remanent magnetization demagnetization studies indicate a well-behaved remanence. Various rock magnetic procedures strongly suggest the magnetic carrier is dominated by pseudo-single domain magnetite appropriate for recording relative intensity variations of the paleomagnetic field. Nine zones of unusually low relative paleointensity were identified within the 2 my Chron C12R interval. Seven can be typified by a approximately 20-40 kyr interval of low field intensity accompanied by apparently random, low-amplitude, short-duration directional fluctuations. The other two are of approximately equal duration and intensity but exhibit an orderly progression of directional changes that result in well-defined virtual geomagnetic pole (VGP) paths confined along a preferred meridian of approximately 70-90-degrees-W longitude. We propose that both styles occur when the main dipole term diminishes significantly but that the former result when undimished ''normal'' secular variation is continuous during the period of low axial dipole moment. We propose that the other two lows in relative paleointensity, along with one reversal record, reflect a field structure of low axial dipole moment dominated by a low-degree nonzonal spherical harmonic term. Alternatively, the confined VGP paths could be an artifact of heavy remanence smoothing between nonantipodal, semistable transitional geomagnetic pole positions. Geographical control of VGP paths, particularly along approximately 70-90-degrees-W longitude, has recently been noted for much younger reversals. The site 522 record may indicate that the underlying cause of this phenomenon was present at 32 Ma. We compare our C12R record of paleointensity lows with C12R marine magnetic anomaly ''tiny wiggles''. These data appear to indicate that C12R tiny wiggles resulted from periods of low geomagnetic field intensity that were sometimes accompanied by directional excursions.