Export 4 results:
Sort by: Author Title Type [ Year  (Desc)]
Panovska, S, Constable CG, Korte M.  2018.  Extending global continuous geomagnetic field reconstructions on timescales beyond human civilization. Geochemistry Geophysics Geosystems. 19:4757-4772.   10.1029/2018gc007966   AbstractWebsite

Study of the late Quaternary geomagnetic field contributes significantly to understanding the origin of millennial-scale paleomagnetic secular variations, the structure of geomagnetic excursions, and the long-term shielding by the geomagnetic field. A compilation of paleomagnetic sediment records and archeomagnetic and lava flow data covering the past 100ka enables reconstruction of the global geomagnetic field on such long-term scales. We use regularized inversion to build the first global, time-dependent, geomagnetic field model spanning the past 100ka, named GGF100k (Global Geomagnetic Field over the past 100 ka). Spatial parametrization of the model is in spherical harmonics and time variations with cubic splines. The model is heavily constrained by more than 100 continuous sediment records covering extended periods of time, which strongly prevail over the limited number of discrete snapshots provided by archeomagnetic and volcanic data. Following an assessment of temporal resolution in each sediment's magnetic record, we have introduced smoothing kernels into the forward modeling when assessing data misfit. This accommodates the smoothing inherent in the remanence acquisition in individual sediment paleomagnetic records, facilitating a closer fit to both high- and low-resolution records in regions where some sediments have variable temporal resolutions. The model has similar spatial resolution but less temporal complexity than current Holocene geomagnetic field models. Using the new reconstruction, we discuss dipole moment variations, the time-averaged field, and paleomagnetic secular variation activity. The new GGF100k model fills the gap in the geomagnetic power spectrum in the frequency range 100-1,000Ma(-1).

Panovska, S, Constable CG.  2017.  An activity index for geomagnetic paleosecular variation, excursions, and reversals. Geochemistry Geophysics Geosystems. 18:1366-1375.   10.1002/2016gc006668   AbstractWebsite

Magnetic indices provide quantitative measures of space weather phenomena that are widely used by researchers in geomagnetism. We introduce an index focused on the internally generated field that can be used to evaluate long term variations or climatology of modern and paleomagnetic secular variation, including geomagnetic excursions, polarity reversals, and changes in reversal rate. The paleosecular variation index, P-i, represents instantaneous or average deviation from a geocentric axial dipole field using normalized ratios of virtual geomagnetic pole colatitude and virtual dipole moment. The activity level of the index, sigma P-i, provides a measure of field stability through the temporal standard deviation of P-i. P-i can be calculated on a global grid from geomagnetic field models to reveal large scale geographic variations in field structure. It can be determined for individual time series, or averaged at local, regional, and global scales to detect long term changes in geomagnetic activity, identify excursions, and transitional field behavior. For recent field models, P-i ranges from less than 0.05 to 0.30. Conventional definitions for geomagnetic excursions are characterized by P-i exceeding 0.5. Strong field intensities are associated with low P-i unless they are accompanied by large deviations from axial dipole field directions. sigma P-i provides a measure of geomagnetic stability that is modulated by the level of PSV or frequency of excursional activity and reversal rate. We demonstrate uses of P-i for paleomagnetic observations and field models and show how it could be used to assess whether numerical simulations of the geodynamo exhibit Earth-like properties.

Brown, MC, Donadini F, Nilsson A, Panovska S, Frank U, Korhonen K, Schuberth M, Korte M, Constable CG.  2015.  GEOMAGIA50.v3: 2. A new paleomagnetic database for lake and marine sediments. Earth Planets and Space. 67   10.1186/s40623-015-0233-z   AbstractWebsite

Background: GEOMAGIA50.v3 for sediments is a comprehensive online database providing access to published paleomagnetic, rock magnetic, and chronological data obtained from lake and marine sediments deposited over the past 50 ka. Its objective is to catalogue data that will improve our understanding of changes in the geomagnetic field, physical environments, and climate. Findings: GEOMAGIA50.v3 for sediments builds upon the structure of the pre-existing GEOMAGIA50 database for magnetic data from archeological and volcanic materials. A strong emphasis has been placed on the storage of geochronological data, and it is the first magnetic archive that includes comprehensive radiocarbon age data from sediments. The database will be updated as new sediment data become available. Conclusions: The web-based interface for the sediment database is located at This paper is a companion to Brown et al. (Earth Planets Space doi:10.1186/s40623-015-0232-0,2015) and describes the data types, structure, and functionality of the sediment database.

McMillan, DG, Constable CG.  2006.  Limitations in correlation of regional relative geomagnetic paleointensity. Geochemistry Geophysics Geosystems. 7   10.1029/2006gc001350   AbstractWebsite

Time domain correlations of common features among relative paleointensity records from sedimentary cores are invaluable to paleomagnetism and paleoclimatology. Sediments with high accumulation rates might now provide millennial scale correlations of temporal variations in the geomagnetic dipole moment. Errors in the ages of paleomagnetic data samples, however, can make such correlations difficult and unreliable. We use spectral methods to assess the level of coherence expected among individual and stacked high- resolution simulated paleointensity records for the time interval 0 - 75 ka. Correlations between individual paleointensity records are systematically degraded with decreased sedimentation rate and increased magnitude of age errors. We find that with optimistic age errors and interpolation of depth sampled data to evenly spaced time series, only short period signal in high- resolution relative paleointensity is corrupted. For currently available methods of establishing chronologies, we estimate the minimum characteristic timescale of correlative features between pairs of regional stacked records at about 4.5 kyr. From an analysis of NAPIS- 75 and SAPIS data, it appears that the limit is inherent to the regional stacks and not a consequence of comparison of distant, independent data sets. A detailed comparison of the NAPIS- 75 and SAPIS stacks shows that this limit is likely larger, perhaps 6 kyr. At long periods the two regional stacks are more poorly correlated than those from our simulations, suggesting somewhat larger age errors in the individual paleointensity records.