Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
Buffett, BA, Ziegler L, Constable CG.  2013.  A stochastic model for palaeomagnetic field variations. Geophysical Journal International. 195:86-97.   10.1093/gji/ggt218   AbstractWebsite

Regeneration of the Earth's magnetic field by convection in the liquid core produces a broad spectrum of time variation. Relative palaeointensity measurements in marine sediments provide a detailed record over the past 2 Myr, but an explicit reconstruction of the underlying dynamics is not feasible. A more practical alternative is to construct a stochastic model from estimates of the virtual axial dipole moment. The deterministic part of the model (drift term) describes time-averaged behaviour, whereas the random part (diffusion term) characterizes complex interactions over convective timescales. We recover estimates of the drift and diffusion terms from the SINT2000 model of Valet et al. and the PADM2M model of Ziegler et al. The results are used in numerical solutions of the Fokker-Planck equation to predict statistical properties of the palaeomagnetic field, including the average rates of magnetic reversals and excursions. A physical interpretation of the stochastic model suggests that the timescale for adjustments in the axial dipole moment is set by the dipole decay time tau(d). We obtain tau(d) = 29 kyr from the stochastic models, which falls within the expected range for the Earth's core. We also predict the amplitude of convective fluctuations in the core, and establish a physical connection to the rates of magnetic reversals and excursions. Chrons lasting longer than 10 Myr are unlikely under present-day conditions. However, long chrons become more likely if the diffusion term is reduced by a factor of 2. Such a change is accomplished by reducing the velocity fluctuations in the core by a factor of root 2, which could be attributed to a shift in the spatial pattern of heat flux from the core or a reduction in the total core heat flow.

McMillan, DG, Constable CG.  2006.  Limitations in correlation of regional relative geomagnetic paleointensity. Geochemistry Geophysics Geosystems. 7   10.1029/2006gc001350   AbstractWebsite

Time domain correlations of common features among relative paleointensity records from sedimentary cores are invaluable to paleomagnetism and paleoclimatology. Sediments with high accumulation rates might now provide millennial scale correlations of temporal variations in the geomagnetic dipole moment. Errors in the ages of paleomagnetic data samples, however, can make such correlations difficult and unreliable. We use spectral methods to assess the level of coherence expected among individual and stacked high- resolution simulated paleointensity records for the time interval 0 - 75 ka. Correlations between individual paleointensity records are systematically degraded with decreased sedimentation rate and increased magnitude of age errors. We find that with optimistic age errors and interpolation of depth sampled data to evenly spaced time series, only short period signal in high- resolution relative paleointensity is corrupted. For currently available methods of establishing chronologies, we estimate the minimum characteristic timescale of correlative features between pairs of regional stacked records at about 4.5 kyr. From an analysis of NAPIS- 75 and SAPIS data, it appears that the limit is inherent to the regional stacks and not a consequence of comparison of distant, independent data sets. A detailed comparison of the NAPIS- 75 and SAPIS stacks shows that this limit is likely larger, perhaps 6 kyr. At long periods the two regional stacks are more poorly correlated than those from our simulations, suggesting somewhat larger age errors in the individual paleointensity records.