Export 4 results:
Sort by: Author Title Type [ Year  (Desc)]
Cromwell, G, Tauxe L, Staudigel H, Constable CG, Koppers AAP, Pedersen RB.  2013.  In search of long-term hemispheric asymmetry in the geomagnetic field : Results from high northern latitudes. Geochemistry Geophysics Geosystems. 14:3234-3249.   10.1002/ggge.20174   AbstractWebsite

Investigations of the behavior of the geomagnetic field on geological timescales rely on globally distributed data sets from dated lava flows. We present the first suitable data from the Arctic region, comprising 37 paleomagnetic directions from Jan Mayen (71 degrees N, 0.2-461 ka) and Spitsbergen (79 degrees N, 1-9.2 Ma) and five paleointensity results. Dispersion of the Arctic virtual geomagnetic poles over the last 2 Ma (27.34.0 degrees) is significantly lower than that from published Antarctic data sets (32.15.0 degrees). Arctic average virtual axial dipole moment (76.824.3 ZAm(2)) is high in comparison to Antarctica over the same time interval (34.88.2 ZAm(2)), although the data are still too sparse in the Arctic to be definitive. These data support a long-lived hemispheric asymmetry of the magnetic field, contrasting higher, more stable fields in the north with lower average strength and more variable field directions in the south. Such features require significant non-axial-dipole contributions over 10(5)-10(6) years.

Ziegler, LB, Constable CG, Johnson CL.  2008.  Testing the robustness and limitations of 0-1 Ma absolute paleointensity data. Physics of the Earth and Planetary Interiors. 170:34-45.   10.1016/j.pepi.2008.07.027   AbstractWebsite

Absolute paleomagnetic field intensity data derived from thermally magnetized lavas and archeological objects provide information about past geomagnetic field behavior, but the average field strength, its variability, and the expected statistical distribution of these observations remain uncertain despite growing data sets. We investigate these issues for the 0-1 Ma field using data compiled in Perrin and Schnepp [Perrin, M., Schnepp, E., 2004. IAGA paleointensity database: distribution and quality of the data set. Phys. Earth Planet. Int. 147, 255-267], 1124 samples of heterogeneous quality and with restricted temporal and spatial coverage. We accommodate variable spatial sampling by using virtual axial dipole moments (VADM) in our analyses. Uneven temporal sampling results in biased estimates for the mean field and its statistical distribution. We correct for these effects using a bootstrap technique, and find an average VADM of 7.26 +/- 0.14 x 10(22) A m(2). The associated statistical distribution appears bimodal with a subsidiary peak at approximately 5 x 10(22) A m(2). We evaluate a range of potential sources for this behavior. We find no visible evidence for contamination by poor quality data when considering author-supplied uncertainties in the 0-1 Ma data set. The influence of material type is assessed using independent data compilations to compare Holocene data from lava flows, submarine basaltic glass (SBG), and archeological objects. The comparison to SBG is inconclusive because of dating issues, but paleointensity estimates from lavas are on average about 10% higher than for archeological materials and show greater dispersion. Only limited tests of geographic sampling bias are possible. We compare the large number of 0-0.55 Ma Hawaiian data to the global data set with no definitive results. The possibility of over-representation of typically low intensity excursional data is discounted because exclusion of transitional data still leaves a bimodal distribution. No direct test has allowed us to rule out the idea that the observed pdf results from a mixture of two distinct distributions corresponding to two identifiable intensity states for the magnetic field. We investigate an alternative possibility that we were simply unable to recover a hypothetically smoother underlying distribution with a time span of only 1 Myr and the resolution of the current data set. Simulations from a stochastic model based on the geomagnetic field spectrum demonstrate that long period intensity variations can have a strong impact on the observed distributions and could plausibly explain the apparent bimodality. Our 0-1 Ma distribution of VADMs is consistent with that obtained for average relative paleointensity records derived from sediments. (C) 2008 Elsevier B.V. All rights reserved.

Korte, M, Constable C.  2003.  Continuous global geomagnetic field models for the past 3000 years. Physics of the Earth and Planetary Interiors. 140:73-89.   10.1016/j.pepi.2003.07.013   AbstractWebsite

Several global geomagnetic field models exist for recent decades, but due to limited data availability models for several centuries to millennia are rare. We present a continuous spherical harmonic model for almost 3 millennia from 1000 B.C. to 1800 A.D., based on a dataset of directional archaeo- and paleomagnetic data and axial dipole constraints. The model, named Continuous Archaeomagnetic and Lake Sediment Geomagnetic Model for the last 3k years (CALS3K.1), can be used to predict both the field and secular variation. Comparisons and tests with synthetic data lead to the conclusion that CALS3K.1 gives a good general, large-scale representation of the geomagnetic field, but lacks small-scale structure due to the limited resolution of the sparse dataset. In future applications the model can be used for comparisons with additional, new data for that time span. For better resolved regions, the agreement of data with CALS3K.1 will provide an idea about the general compatibility of the data with the field and secular variation in that region of the world. For poorly covered regions and time intervals we hope to iteratively improve the model by comparisons with and inclusion of new data. Animations and additional snapshot plots of model predictions as well as the model coefficients and a FORTRAN code to evaluate them for any time can be accessed under The whole package is also stored in the Earthref digital archive at (C) 2003 Elsevier B.V. All rights reserved.

Constable, CG, Johnson CL.  1999.  Anisotropic paleosecular variation models: implications for geomagnetic field observables. Physics of the Earth and Planetary Interiors. 115:35-51.   10.1016/s0031-9201(99)00065-5   AbstractWebsite

We present a family of statistical models for paleosecular variation (PSV) of the geomagnetic field that are compatible with paleodirectional and paleointensity variations in lava flows sampling the last 5 Ma, and explore what paleomagnetic observables might be used to discriminate among the various family members. We distinguish statistical models with axial anisotropy, which provide a suitable description for an earth with homogeneous boundary conditions at the core-mantle interface from those with more general anisotropy corresponding to geographically heterogeneous boundary conditions. The models revise and extend earlier ones, which are themselves descendants of CP88, devised by Constable and Parker [Constable, C.G., Parker, R.L., 1988. Statistics of the geomagnetic secular variation for the past 5 m.y. J. Geophys, Res. 93, 11569-11581]. In CP88, secular variation is described by statistical variability of each Gauss coefficient in a spherical harmonic description of the geomagnetic field, with each coefficient treated as a normally distributed random variable: the Gauss coefficients of the non-dipole part of the field exhibit isotropic variability, and the variances are derived from the present field spatial power spectrum. The dipole terms have a special status in CP88, with a non-zero mean for the axial-dipole, and lower variance than predicted from the spatial power spectrum. All non-dipole terms have zero mean except the axial-quadrupole. CP88 is untenable for two reasons: it fails to predict the observed geographic dependence of directional variability in the magnetic field, and it grossly underpredicts the variance in paleointensity data. The new models incorporate large variance in the axial-dipole, and in the non-axial-quadrupole Gauss coefficients, g1/2: and h1/2:. The resulting variance in paleomagnetic observables depends only on latitude (zonal models), unless the variance in h1/2: is different from that in g1/2 (non-zonal models). Non-zonal (longitudinal) variations in PSV, such as the flux lobes seen in the historical magnetic field, are simulated using the non-zonal models. Both the zonal and non-zonal models fit summary statistics of the present dataset. We investigate the influence of persistent non-zonal influences in PSV on various paleomagnetic observables. It is shown that virtual geomagnetic pole (VGP) dispersion is rather insensitive to longitudinal variations in structure of PSV, and that inclination dispersion has the potential to be more informative given the right site distribution. There is also the possibility of using paleointensity and geographic variations in the frequency of occurrence of excursional directions to identify appropriate PSV models. (C) 1999 Elsevier Science B.V. All rights reserved.