Publications

Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
2009
Korte, M, Donadini F, Constable CG.  2009.  Geomagnetic field for 0-3 ka: 2. A new series of time-varying global models. Geochemistry Geophysics Geosystems. 10   10.1029/2008gc002297   AbstractWebsite

Steadily increasing numbers of archeomagnetic and paleomagnetic data for the Holocene have allowed development of temporally continuous global spherical harmonic models of the geomagnetic field extending present and historical global descriptions of magnetic field evolution. The current work uses various subsets of improved data compilations, details of which are given in a companion paper by Donadini et al. (2009), and minor modifications of standard modeling strategies (using temporally and spatially regularized inversion of the data and cubic spline parameterizations for temporal variations) to produce five models with enhanced spatial and temporal resolution for 0-3 ka. Spurious end effects present in earlier models are eliminated by enforcing large-scale agreement with the gufm1 historical model for 1650-1990 A.D. and by extending the model range to accommodate data older than 3 ka. Age errors are not considered as a contribution to data uncertainties but are included along with data uncertainties in an investigation of statistical uncertainty estimates for the models using parametric bootstrap resampling techniques. We find common features but also significant differences among the various models, indicating intrinsic uncertainties in global models based on the currently available Holocene data. Model CALS3k.3 based on all available archeomagnetic and sediment data, without a priori quality selection, currently constitutes the best global representation of the past field. The new models have slightly higher dipole moments than our previous models. Virtual axial dipole moments (VADMs) calculated directly from the data are in good agreement with all corresponding model predictions of VADMs. These are always higher than the spherical harmonic dipole moment, indicating the limitations of using VADMs as a measure of geomagnetic dipole moments.

2006
Korte, M, Constable CG.  2006.  On the use of calibrated relative paleointensity records to improve millennial-scale geomagnetic field models. Geochemistry Geophysics Geosystems. 7   10.1029/2006gc001368   AbstractWebsite

[ 1] Current millennial-scale time-varying global geomagnetic field models suffer from a lack of intensity data compared to directional data, because only thermoremanently magnetized material can provide absolute information about the past field strength. The number of archeomagnetic artifacts that can provide such data diminishes rapidly prior to 3000 B. C. Sediment cores provide time series of declination and inclination and of variations of magnetization: the latter can reflect relative geomagnetic field variations if suitably normalized. We propose a calibration technique based on predictions from global models and use the CALS7K. 2 model to calibrate relative paleointensity records from 22 globally distributed locations and assess whether they reflect actual field variations. All except a few contain useful information for 0 to 7 ka and could be used to improve the existing models. Using synthetic data from a numerical dynamo simulation, we show that with the existing directional data the distribution of intensity data has an important influence on model quality. Intensity data from a broad range of latitudes seem particularly important. This study opens the possibility of extending global time-varying geomagnetic field models further back in time than the current 7 kyr interval.

2005
Korte, M, Constable CG.  2005.  Continuous geomagnetic field models for the past 7 millennia: 2. CALS7K. Geochemistry Geophysics Geosystems. 6   10.1029/2004gc000801   AbstractWebsite

We present two continuous global geomagnetic field models for recent millennia: CALS3K.2, covering the past 3000 years, and CALS7K.2, covering 7000 years from 5000 BC to 1950 AD. The models were determined by regularized least squares inversion of archeomagnetic and paleomagnetic data using spherical harmonics in space and cubic B splines in time. They are derived from a greatly increased number of paleomagnetic directional data, compared to previous efforts, and for the first time a significant amount of archeointensity data is used in this kind of global model, allowing the determination of evolution of geomagnetic dipole strength. While data accuracy and dating uncertainties remain a limitation, reliable low-resolution global models can be obtained. The results agree well with previous results from virtual axial dipole moment (VADM) studies from archeomagnetic intensity data apart from a systematic offset in strength. A comparison of model predictions with the previous 3000 year model, CALS3K.1, gives general agreement but also some significant differences particularly for the early epochs. The new models suggest that the prominent two northern hemisphere flux lobes are more stationary than CALS3K.1 implied, extending considerably the time span of stationary flux lobes observed in historical models. Between 5000 BC and 2000 BC there are time intervals of weak dipole moment where dipole power is exceeded by low-degree nondipole power at the core-mantle boundary.