Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
Korte, M, Constable CG.  2018.  Archeomagnetic intensity spikes: Global or regional geomagnetic field features? Frontiers in Earth Science. 6   10.3389/feart.2018.00017   AbstractWebsite

Variations of the geomagnetic field prior to direct observations are inferred from archeo- and paleomagnetic experiments. Seemingly unusual variations not seen in the present-day and historical field are of particular interest to constrain the full range of core dynamics. Recently, archeomagnetic intensity spikes, characterized by very high field values that appear to be associated with rapid secular variation rates, have been reported from several parts of the world. They were first noted in data from the Levant at around 900 BCE. A recent re-assessment of previous and new Levantine data, involving a rigorous quality assessment, interprets the observations as an extreme local geomagnetic high with at least two intensity spikes between the 11th and 8th centuries BCE. Subsequent reports of similar features from Asia, the Canary Islands and Texas raise the question of whether such features might be common occurrences, or whether they might even be part of a global magnetic field feature. Here we use spherical harmonic modeling to test two hypotheses: firstly, whether the Levantine and other potential spikes might be associated with higher dipole field intensity than shown by existing global field models around 1,000 BCE, and secondly, whether the observations from different parts of the world are compatible with a westward drifting intense flux patch. Our results suggest that the spikes originate from intense flux patches growing and decaying mostly in situ, combined with stronger and more variable dipole moment than shown by previous global field models. Axial dipole variations no more than 60% higher than observed in the present field, probably within the range of normal geodynamo behavior, seem sufficient to explain the observations.

Panovska, S, Korte M, Finlay CC, Constable CG.  2015.  Limitations in paleomagnetic data and modelling techniques and their impact on Holocene geomagnetic field models. Geophysical Journal International. 202:402-418.   10.1093/gji/ggv137   AbstractWebsite

Characterization of geomagnetic field behaviour on timescales of centuries to millennia is necessary to understand the mechanisms that sustain the geodynamo and drive its evolution. As Holocene paleomagnetic and archeomagnetic data have become more abundant, strategies for regularized inversion of modern field data have been adapted to produce numerous time-varying global field models. We evaluate the effectiveness of several approaches to inversion and data handling, by assessing both global and regional properties of the resulting models. Global Holocene field models cannot resolve Southern hemisphere regional field variations without the use of sediments. A standard data set is used to construct multiple models using two different strategies for relative paleointensity calibration and declination orientation and a selection of starting models in the inversion procedure. When data uncertainties are considered, the results are similar overall regardless of whether we use iterative calibration and reorientation, or co-estimation of the calibration and orientation parameters as part of the inversion procedure. In each case the quality of the starting model used for initial relative paleointensity calibration and declination orientation is crucial and must be based on the best absolute information available. Without adequate initial calibration the morphology of dipole moment variations can be recovered but its absolute value will be correlated with the initial intensity calibrations, an effect that might be mitigated by ensuring an appropriate fit to enough high quality absolute intensity data with low uncertainties. The declination reorientation mainly impacts regional field structure and in the presence of non-zonal fields will result in a non-zero local average. The importance of declination orientation is highlighted by inconsistencies in the West Pacific and Australian sediment records in CALS10k.1b model. Great care must also be taken to assess uncertainties associated with both paleomagnetic and age data and to evaluate the effects of poor data distribution. New consistently allocated uncertainty estimates for sediment paleomagnetic records highlight the importance of adequate uncertainties in the inversion process, as they determine the relative weighting among the data and overall normalized misfit levels which in turn influence the complexity of the inferred field models. Residual distributions suggest that the most appropriate misfit measure is the L-1 norm (minimum absolute deviation) rather than L-2 (least squares), but this seems to have relatively minor impact on the overall results. For future Holocene field modelling we see a need for comprehensive methods to assess uncertainty in individual archeomagnetic data so that these data or models derived from them can be used for reliable initial relative paleointensity calibration and declination orientation in sediments. More work will be needed to assess whether co-estimation or an iterative approach to inversion is more efficient overall. This would be facilitated by realistic and globally consistent data and age uncertainties from the paleomagnetic community.

Donadini, F, Korte M, Constable CG.  2009.  Geomagnetic field for 0-3 ka: 1. New data sets for global modeling. Geochemistry Geophysics Geosystems. 10   10.1029/2008gc002295   AbstractWebsite

Paleomagnetic and archeomagnetic records are used in both regional and global studies of Earth's magnetic field. We present a description and assessment of five newly compiled data sets, also used in the companion paper by Korte et al. (2009) to produce a series of time-varying spherical harmonic models of the geomagnetic field for the last 3000 years. Data are drawn from our compilation of lake sediment records and from the online database, GEOMAGIA50v2. The five selections are available from the EarthRef Digital Archive at Data are grouped according to the source of material, and we conducted separate assessments of reliability for archeomagnetic artifacts and lava flows (the ARCH3k_dat data set) and for sediments (SED3k_dat). The overall number of data is 55% greater than in previous compilations. Constrained data sets were selected using different criteria for each group. Winnowing of archeological data was based on uncertainties supplied by the original data providers. The lake sediment data assessment relied on preassigned age uncertainties and one or more of the following: comparisons with archeomagnetic data from the same region, regional consistency among several lakes, and consistency with global archeomagnetic models. We discuss relative merits of a larger unconstrained data set or a smaller (possibly) more reliable one. The constrained data sets eliminate a priori up to 35% of the available data in each case and rely on potentially subjective assessments of data quality. Given the limited data available our analyses indicate that iterative rejection of a small number (1-1.5%) of outlying data during global field modeling is a preferable approach. Specific regional comparisons among the models and data support the conclusion that Korte et al.'s outlier-free CALS3k.3 model based on all available measurements from sediments and archeological artifacts currently provides the best global representation of the 0-3 ka field; the ARCH3k.1 model provides a better fit to the denser European archeomagnetic data and may be better in that region.