Publications

Export 2 results:
Sort by: [ Author  (Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q [R] S T U V W X Y Z   [Show ALL]
R
RygaardHjalsted, C, Constable CG, Parker RL.  1997.  The influence of correlated crustal signals in modelling the main geomagnetic field. Geophysical Journal International. 130:717-726.   10.1111/j.1365-246X.1997.tb01866.x   AbstractWebsite

Algorithms used in geomagnetic main-field modelling have for the most part treated the noise in the field measurements as if it were white. A major component of the noise consists of the field due to magnetization in the crust and it has been realized for some time that such signals are highly correlated at satellite altitude. Hence approximation by white noise, while of undoubted utility, is of unknown validity. Langel, Estes & Sabaka (1989) were the first to evaluate the influence of correlations in the crustal magnetic field on main-field models. In this paper we study two plausible statistical models for the crustal magnetization described by Jackson (1994), in which the magnetization is a realization of a stationary, isotropic, random process. At a typical satellite altitude the associated fields exhibit significant correlation over ranges as great as 15 degrees or more, which introduces off-diagonal elements into the covariance matrix, elements that have usually been neglected in modelling procedures. Dealing with a full covariance matrix for a large data set would present a formidable computational challenge, brit fortunately most of the entries in the covariance matrix are so small that they can be replaced by zeros. The resultant matrix comprises only about 3 per cent non-zero entries and thus we can take advantage of efficient sparse matrix techniques to solve the numerical system. We construct several main-field models based on vertical-component data from a selected 5 degrees by 5 degrees data set derived from the Magsat mission. Models with and without off-diagonal terms are compared. For one of the two Jackson crustal models, k(3), we find significant changes in the main-field coefficients, with maximum discrepancies near degree 11 of about 27 per cent. The second crustal spectrum gives rise to much smaller effects for the data set used here, because the correlation lengths are typically shorter than the data spacing. k(4) also significantly underpredicts the observed magnetic spectrum around degree 15. We conclude that there is no difficulty in computing main-field models that include off-diagonal terms in the covariance matrix when sparse matrix techniques are employed; we find that there may be important effects in the computed models, particularly if we wish to make full use of dense data sets. Until a definitive crustal field spectrum has been determined, the precise size of the effect remains uncertain. Obtaining such a statistical model should be a high priority in preparation for the analysis of future low-noise satellite data.

Ribaudo, JT, Constable CG, Parker RL.  2012.  Scripted finite element tools for global electromagnetic induction studies. Geophysical Journal International. 188:435-446.   10.1111/j.1365-246X.2011.05255.x   AbstractWebsite

Numerical solution of global geomagnetic induction problems in two and three spatial dimensions can be conducted with commercially available, general-purpose, scripted, finite-element software. We show that FlexPDE is capable of solving a variety of global geomagnetic induction problems. The models treated can include arbitrary electrical conductivity of the core and mantle, arbitrary spatial structure and time behaviour of the primary magnetic field. A thin surface layer of laterally heterogeneous conductivity, representing the oceans and crust, may be represented by a boundary condition at the Earthspace interface. We describe a numerical test, or validation, of the program by comparing its output to analytic and semi-analytic solutions for several electromagnetic induction problems: (1) concentric spherical shells representing a layered Earth in a time-varying, uniform, external magnetic field, (2) eccentrically nested conductive spheres in the same field and (3) homogeneous spheres or cylinders, initially at rest, then rotating at a steady rate in a constant, uniform, external field. Calculations are performed in both the time and frequency domains, and in both 2-D and 3-D computational meshes, with adaptive mesh refinement. Root-mean-square accuracies of better than 1 per cent are achieved in all cases. A unique advantage of our technique is the ability to model Earth rotation in both the time and the frequency domain, which is especially useful for simulating satellite data.