Publications

Export 11 results:
Sort by: Author Title Type [ Year  (Desc)]
2011
Korte, M, Constable C, Donadini F, Holme R.  2011.  Reconstructing the Holocene geomagnetic field. Earth and Planetary Science Letters. 312:497-505.   10.1016/j.epsl.2011.10.031   AbstractWebsite

Knowledge of the Holocene evolution of Earth's magnetic field is important for understanding geodynamo processes in the core, is necessary for studying long-term solar-terrestrial relationships, and can provide useful age constraints for archeologicaland stratigraphic applications. Continuous time-varying global field models based on archeo- and paleomagnetic data are useful tools in this regard. We use a comprehensive data compilation and recently refined modelling strategies to produce CALS10k.1b, the first time-varying spherical harmonic geomagnetic field model spanning 10 ky. The model is an average obtained from bootstrap sampling to take account of uncertainties in magnetic components and ages in the data (and hence has version number 1b instead of 1). This model shows less spatial and temporal resolution than earlier versions for 0-3 ka, and particularly aims to provide a robust representation of the large-scale field at the core-mantle boundary (CMB). We discuss the geomagnetic dipole evolution and changes in Holocene magnetic field morphology at the CMB as shown by the new reconstruction. The results are compatible with earlier models (CALS3k.3 and CALS3k.4) for 0-3 ka, but reveal some clear deficiencies in the 0-7 ka CALS7K.2 model prior to 3 ka. CALS10k.1b is able to resolve mobile and structurally-evolving high latitude radial field flux lobes at the CMB in both hemispheres, as well as persistent non-zonal structure, in the 10 ky average. Contributions to the average field from time-varying structures in the equatorial Indonesian-Australian region are particularly striking. (C) 2011 Elsevier B.V. All rights reserved.

Amit, H, Korte M, Aubert J, Constable C, Hulot G.  2011.  The time-dependence of intense archeomagnetic flux patches. Journal of Geophysical Research-Solid Earth. 116   10.1029/2011jb008538   AbstractWebsite

The long-term temporal behavior of intense geomagnetic flux patches at the core-mantle boundary and the relation with lower mantle lateral heterogeneity are under debate. We apply an algorithm to detect centers of intense flux patches and track their time-evolution in a recent archeomagnetic field model in order to study the kinematics of such intense magnetic flux patches on millennial timescale. We find that most intense flux patches appear near the edge of the tangent cylinder. Quasi-stationary periods with small oscillations of patches occur more than drifts. Detailed comparison of the archeomagnetic patches' behavior with that seen in numerical dynamos with tomographic heat flux boundary conditions suggests that core-mantle thermal coupling could be the cause of a statistical preference for some longitudes on the long term, which does not exclude significant time spent away from the preferred longitudes. This could explain the roughly coincident locations of high-latitude patches in the historical geomagnetic field with that of the time-average paleomagnetic field together with the much weaker patches intensity in the latter. Alternating eastward and westward drifts are also observed. The drifts are more westward than eastward, especially in the southern hemisphere, indicating that the time-average zonal core flow may also be driven by core-mantle thermal coupling. An average patch lifetime of similar to 300 years is found, which we hypothesize may indicate the vortex lifetime in the outer core.

2010
Hulot, G, Finlay CC, Constable CG, Olsen N, Mandea M.  2010.  The Magnetic Field of Planet Earth. Space Science Reviews. 152:159-222.   10.1007/s11214-010-9644-0   AbstractWebsite

The magnetic field of the Earth is by far the best documented magnetic field of all known planets. Considerable progress has been made in our understanding of its characteristics and properties, thanks to the convergence of many different approaches and to the remarkable fact that surface rocks have quietly recorded much of its history. The usefulness of magnetic field charts for navigation and the dedication of a few individuals have also led to the patient construction of some of the longest series of quantitative observations in the history of science. More recently even more systematic observations have been made possible from space, leading to the possibility of observing the Earth's magnetic field in much more details than was previously possible. The progressive increase in computer power was also crucial, leading to advanced ways of handling and analyzing this considerable corpus of data. This possibility, together with the recent development of numerical simulations, has led to the development of a very active field in Earth science. In this paper, we make an attempt to provide an overview of where the scientific community currently stands in terms of observing, interpreting and understanding the past and present behavior of the so-called main magnetic field produced within the Earth's core. The various types of data are introduced and their specific properties explained. The way those data can be used to derive the time evolution of the core field, when this is possible, or statistical information, when no other option is available, is next described. Special care is taken to explain how information derived from each type of data can be patched together into a consistent description of how the core field has been behaving in the past. Interpretations of this behavior, from the shortest (1 yr) to the longest (virtually the age of the Earth) time scales are finally reviewed, underlining the respective roles of the magnetohydodynamics at work in the core, and of the slow dynamic evolution of the planet as a whole.

2008
Genevey, A, Gallet Y, Constable CG, Korte M, Hulot G.  2008.  ArcheoInt: An upgraded compilation of geomagnetic field intensity data for the past ten millennia and its application to the recovery of the past dipole moment. Geochemistry Geophysics Geosystems. 9   10.1029/2007gc001881   AbstractWebsite

This paper presents a compilation of intensity data covering the past 10 millennia (ArcheoInt). This compilation, which upgrades the one of Korte et al. (2005), contains 3648 data and incorporates additional intensity and directional data sets. A large majority of these data (similar to 87%) were acquired on archeological artifacts, and the remaining similar to 13% correspond to data obtained from volcanic products. The present compilation also includes important metadata for evaluating the intensity data quality and providing a foundation to guide improved selection criteria. We show that similar to 50% of the data set fulfill reasonable reliability standards which take into account the anisotropic nature of most studied objects (potsherds), the stability of the magnetization, and the data dispersion. The temporal and geographical distributions of this sub-data set are similar to those of the main data set, with similar to 72% of the data dated from the past three millennia and similar to 76% obtained from western Eurasia. Approximately half of the selected intensity data are associated with at least an inclination value. To constrain the axial and full dipole evolution over the past three millennia requires that we avoid any overrepresentation of the western Eurasian data. We introduce a first-order regional weighting scheme based on the definition of eight widely distributed regions of 30 degrees width within which the selected data are numerous enough. The regional curves of virtual axial dipole moments (VADM) and of mixed VADM-virtual dipole moments (VDM) averaged over sliding windows of 200 years and 500 years testify for strong contributions from either equatorial dipole or nondipole components. The computation of global VADM and mixed VADM/VDM variation curves, assuming an equal weight for each region, yields a dipole evolution marked by a distinct minimum around 0 B.C./A.D. followed by a maximum around the third-fourth century A. D. A second minimum is present around the eighth century A. D. This variation pattern is compatible with the one deduced from earlier, more sophisticated analysis based on the inversion of both intensity and directional data. In particular, there is a good agreement among all VADMs and dipole moment estimates over the historical period, which further strengthens the validity of our weighting scheme.

2007
Constable, C.  2007.  Dipole moment variation. Encyclopedia of geomagnetism and paleomagnetism. ( Gubbins D, Herrero-Bervera E, Eds.).:159-161., Dordrecht: Springer Abstract
n/a
Constable, C.  2007.  Geomagnetic temporal spectrum. Encyclopedia of geomagnetism and paleomagnetism. ( Gubbins D, Herrero-Bervera E, Eds.).:353-355., Dordrecht: Springer Abstract
n/a
Constable, C.  2007.  Non-dipole field. Encyclopedia of geomagnetism and paleomagnetism. ( Gubbins D, Herrero-Bervera E, Eds.).:701-704., Dordrecht: Springer Abstract
n/a
2004
Staudigel, H, Hart SR, Koppers AAP, Constable C, Workman R, Kurz M, Baker ET.  2004.  Hydrothermal venting at Vailulu'u Seamount: The smoking end of the Samoan chain. Geochemistry Geophysics Geosystems. 5   10.1029/2003gc000626   AbstractWebsite

[1] The summit crater of Vailulu'u Seamount, the youngest volcano in the Samoan chain, hosts an active hydrothermal system with profound impact on the ocean water column inside and around its crater ( 2 km wide and 407 m deep at a 593 m summit depth). The turbidity of the ocean water reaches 1.4 NTU, values that are higher than in any other submarine hydrothermal system. The water is enriched in hydrothermal Mn (3.8 ppb) and He-3 (1 x 10(-11) cc/g) and we measured water temperature anomalies near the crater floor up to 0.2degreesC. The hydrothermal system shows complex interactions with the ocean currents around Vailulu'u that include tidally-modulated vertical motions of about 40 - 50 m, and replenishment of waters into the crater through breaches in the upper half of the crater wall. Inside and outside potential density gradients suggest that hydrothermal venting exports substantial amounts of water from the crater (1.3 +/- 0.2 x 10(8) m(3)/day), which is in good agreement with fluxes obtained from a tracer release experiment inside the crater of Vailulu'u (0.8 x 10(8) m(3)/day [ Hart et al., 2003]). This mass flux, in combination with the differences in the inside and outside crater temperature, yields a power output of around 760 megawatts, the equivalent of 20 - 100 MOR black smokers. The Mn output of 300 kg/day is approximately ten times the output of a single black smoker.

Constable, CG, Constable SC.  2004.  Satellite magnetic field measurements: applications in studying the deep earth. The state of the planet : frontiers and challenges in geophysics. ( Sparks RSJ, Hawkesworth CJ, Eds.).:147-160., Washington, DCS.l.: American Geophysical Union ;International Union of Geodesy and Geophysics   10.1029/150GM13   Abstract
n/a
2000
Olsen, N, Holme R, Hulot G, Sabaka T, Neubert T, Toffner-Clausen L, Primdahl F, Jorgensen J, Leger JM, Barraclough D, Bloxham J, Cain J, Constable C, Golovkov V, Jackson A, Kotze P, Langlais B, Macmillan S, Mandea M, Merayo J, Newitt L, Purucker M, Risbo T, Stampe M, Thomson A, Voorhies C.  2000.  Orsted initial field model. Geophysical Research Letters. 27:3607-3610.   10.1029/2000gl011930   AbstractWebsite

Magnetic measurements taken by the Orsted satellite during geomagnetic quiet conditions around January 1, 2000 have been used to derive a spherical harmonic model of the Earth's magnetic field for epoch 2000.0. The maximum degree and order of the model is 19 for internal, and 2 for external, source fields; however, coefficients above degree 14 may not be robust. Such a detailed model exists for only one previous epoch, 1980. Achieved rms misfit is < 2 nT for the scalar intensity and < 3 nT for one of the vector components perpendicular to the magnetic field. For scientific purposes related to the Orsted mission, this model supercedes IGRF 2000.

1993
Hartl, P, Tauxe L, Constable C.  1993.  Early Oligocene Geomatnetic-Field Behavior From Deep-Sea Drilling Project Site-522. Journal of Geophysical Research-Solid Earth. 98:19649-19665.   10.1029/93jb02019   AbstractWebsite

Hydraulic piston coring operations at Deep Sea Drillng Project site 522 in the South Atlantic retrieved an unusually continuous section of late Eocene to late Oligocene pelagic sediments, which we sampled at 3-4 cm intervals (approximately 3-5 kyr). Natural remanent magnetization demagnetization studies indicate a well-behaved remanence. Various rock magnetic procedures strongly suggest the magnetic carrier is dominated by pseudo-single domain magnetite appropriate for recording relative intensity variations of the paleomagnetic field. Nine zones of unusually low relative paleointensity were identified within the 2 my Chron C12R interval. Seven can be typified by a approximately 20-40 kyr interval of low field intensity accompanied by apparently random, low-amplitude, short-duration directional fluctuations. The other two are of approximately equal duration and intensity but exhibit an orderly progression of directional changes that result in well-defined virtual geomagnetic pole (VGP) paths confined along a preferred meridian of approximately 70-90-degrees-W longitude. We propose that both styles occur when the main dipole term diminishes significantly but that the former result when undimished ''normal'' secular variation is continuous during the period of low axial dipole moment. We propose that the other two lows in relative paleointensity, along with one reversal record, reflect a field structure of low axial dipole moment dominated by a low-degree nonzonal spherical harmonic term. Alternatively, the confined VGP paths could be an artifact of heavy remanence smoothing between nonantipodal, semistable transitional geomagnetic pole positions. Geographical control of VGP paths, particularly along approximately 70-90-degrees-W longitude, has recently been noted for much younger reversals. The site 522 record may indicate that the underlying cause of this phenomenon was present at 32 Ma. We compare our C12R record of paleointensity lows with C12R marine magnetic anomaly ''tiny wiggles''. These data appear to indicate that C12R tiny wiggles resulted from periods of low geomagnetic field intensity that were sometimes accompanied by directional excursions.