Publications

Export 5 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C [D] E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
D
Davies, CJ, Constable CG.  2014.  Insights from geodynamo simulations into long-term geomagnetic field behaviour. Earth and Planetary Science Letters. 404:238-249.   10.1016/j.epsl.2014.07.042   AbstractWebsite

Detailed knowledge of the long-term spatial configuration and temporal variability of the geomagnetic field is lacking because of insufficient data for times prior to 10 ka. We use realisations from suitable numerical simulations to investigate three important questions about stability of the geodynamo process: is the present field representative of the past field; does a time-averaged field actually exist; and, supposing it exists, how long is needed to define such a field. Numerical geodynamo simulations are initially selected to meet existing criteria for morphological similarity to the observed magnetic field. A further criterion is introduced to evaluate similarity of long-term temporal variations. Allowing for reasonable uncertainties in the observations, observed and synthetic axial dipole moment frequency spectra for time series of order a million years in length should be fit by the same power law model. This leads us to identify diffusion time as the appropriate time scaling for such comparisons. In almost all simulations, intervals considered to have good morphological agreement between synthetic and observed field are shorter than those of poor agreement. The time needed to obtain a converged estimate of the time-averaged field was found to be comparable to the length of the simulation, even in non-reversing models, suggesting that periods of stable polarity spanning many magnetic diffusion times are needed to obtain robust estimates of the mean dipole field. Long term field variations are almost entirely attributable to the axial dipole; nonzonal components converge to long-term average values on relatively short timescales (15-20 kyr). In all simulations, the time-averaged spatial power spectrum is characterised by a zigzag pattern as a function of spherical harmonic degree, with relatively higher power in odd degrees than in even degrees. We suggest that long-term spatial characteristics of the observed field may emerge on averaging times that are within reach for the next generation of global time-varying paleomagnetic field models. (C) 2014 Elsevier B.V. All rights reserved.

Davies, C, Constable C.  2017.  Geomagnetic spikes on the core-mantle boundary. Nature Communications. 8   10.1038/ncomms15593   AbstractWebsite

Extreme variations of Earth's magnetic field occurred in the Levant region around 1000 BC, when the field intensity rapidly rose and fell by a factor of 2. No coherent link currently exists between this intensity spike and the global field produced by the core geodynamo. Here we show that the Levantine spike must span >60 degrees longitude at Earth's surface if it originates from the core-mantle boundary (CMB). Several low intensity data are incompatible with this geometric bound, though age uncertainties suggest these data could have sampled the field before the spike emerged. Models that best satisfy energetic and geometric constraints produce CMB spikes 8-22 degrees wide, peaking at O(100) mT. We suggest that the Levantine spike reflects an intense CMB flux patch that grew in place before migrating northwest, contributing to growth of the dipole field. Estimates of Ohmic heating suggest that diffusive processes likely govern the ultimate decay of geomagnetic spikes.

Davies, CJ, Constable CG.  2018.  Searching for geomagnetic spikes in numerical dynamo simulations. Earth and Planetary Science Letters. 504:72-83.   10.1016/j.epsl.2018.09.037   AbstractWebsite

We use numerical dynamo simulations to investigate rapid changes in geomagnetic field intensity. The work is motivated by paleomagnetic observations of 'geomagnetic spikes', events where the field intensity rose and then fell by a factor of 2-3 over decadal timescales and a confined spatial region. No comparable events have been found in the historical record and so geomagnetic spikes may contain new and important information regarding the operation of the geodynamo. However, they are also controversial because uncertainties and resolution limitations in the available data hinder efforts to define their spatiotemporal characteristics. This has led to debate over whether such extreme events can originate in Earth's liquid core. Geodynamo simulations produce high spatio-temporal resolution intensity information, but must be interpreted with care since they cannot yet run at the conditions of Earth's liquid core. We employ reversing and non-reversing geodynamo simulations run at different physical conditions and consider various methods of scaling the results to allow comparison with Earth. In each simulation we search for 'extremal events', defined as the maximum intensity difference between consecutive time points, at each location on a 2 degrees latitude-longitude grid at Earth's surface, thereby making no assumptions regarding the spatio-temporal character of the event. Extremal events display spike-shaped time-series in some simulations, though they can often be asymmetric about the peak intensity. Maximum rates of change reach 0.75 mu Tyr(-1) in several simulations, the lower end of estimates for spikes, suggesting that such events can originate from the core. The fastest changes generally occur at latitudes > 50 degrees, which could be used to guide future data acquisitions. Extremal events in the simulations arise from rapid intensification of flux patches as they migrate across the core surface, rather than emergence of flux from within the core. The prospect of observing more spikes in the paleomagnetic record appears contingent on finding samples at the right location and time to sample this particular phase of flux patch evolution. (C) 2018 Published by Elsevier B.V.

Donadini, F, Korte M, Constable CG.  2009.  Geomagnetic field for 0-3 ka: 1. New data sets for global modeling. Geochemistry Geophysics Geosystems. 10   10.1029/2008gc002295   AbstractWebsite

Paleomagnetic and archeomagnetic records are used in both regional and global studies of Earth's magnetic field. We present a description and assessment of five newly compiled data sets, also used in the companion paper by Korte et al. (2009) to produce a series of time-varying spherical harmonic models of the geomagnetic field for the last 3000 years. Data are drawn from our compilation of lake sediment records and from the online database, GEOMAGIA50v2. The five selections are available from the EarthRef Digital Archive at http://earthref.org/cgi-bin/erda.cgi?n=944. Data are grouped according to the source of material, and we conducted separate assessments of reliability for archeomagnetic artifacts and lava flows (the ARCH3k_dat data set) and for sediments (SED3k_dat). The overall number of data is 55% greater than in previous compilations. Constrained data sets were selected using different criteria for each group. Winnowing of archeological data was based on uncertainties supplied by the original data providers. The lake sediment data assessment relied on preassigned age uncertainties and one or more of the following: comparisons with archeomagnetic data from the same region, regional consistency among several lakes, and consistency with global archeomagnetic models. We discuss relative merits of a larger unconstrained data set or a smaller (possibly) more reliable one. The constrained data sets eliminate a priori up to 35% of the available data in each case and rely on potentially subjective assessments of data quality. Given the limited data available our analyses indicate that iterative rejection of a small number (1-1.5%) of outlying data during global field modeling is a preferable approach. Specific regional comparisons among the models and data support the conclusion that Korte et al.'s outlier-free CALS3k.3 model based on all available measurements from sediments and archeological artifacts currently provides the best global representation of the 0-3 ka field; the ARCH3k.1 model provides a better fit to the denser European archeomagnetic data and may be better in that region.

Donadini, F, Korte M, Constable C.  2010.  Millennial Variations of the Geomagnetic Field: from Data Recovery to Field Reconstruction. Space Science Reviews. 155:219-246.   10.1007/s11214-010-9662-y   AbstractWebsite

Variations of the geomagnetic field over past millennia can be determined from archeomagnetic data and paleomagnetic sediment records. The resolution and validity of any field reconstruction depends on the reliability of such indirect measurements of past field values. Considerable effort is invested to ensure that the magnetic minerals carrying the ancient magnetization are good, if not ideal, recorders of the magnetic field. This is achieved by performing a wide array of rock magnetic and microscopy investigations, many of which are outlined here. In addition to data quality, the spatial and temporal distributions of archeomagnetic and sediment records play a significant role in the accuracy of past field reconstruction. Global field reconstructions enable studies of dynamic processes in Earth's core. They rely on data compilations which ideally include information about the quality of a measurement and provide a useful archive for selecting data with the best characteristics. There is, however, a trade off between the total number of reliable data and the geographic or temporal coverage. In this review we describe the various types of paleomagnetic recorders, and the kind of measurements that are performed to gather reliable geomagnetic field information. We show which modeling strategies are most suitable, and the main features of the field that can be derived from the resulting models. Finally, we discuss prospects for progress in this kind of research.