Modelling the geomagnetic field from syntheses of paleomagnetic data

Citation:
Constable, CG.  2011.  Modelling the geomagnetic field from syntheses of paleomagnetic data. Physics of the Earth and Planetary Interiors. 187:109-117.

Date Published:

Aug

Keywords:

4 centuries, axial dipole, axial dipole moment, copper slag, geodynamo, geomagnetic, geomagnetic field, geomagnetism, historical records, intensity, ma, magnetic-field, paleointensity, Paleomagnetic dipole moment, paleosecular variation, past 7 millennia, power spectrum, secular variation, Virtual

Abstract:

This review examines results from time-varying geomagnetic field models that span several thousand years, and from variations in dipole moment strength up to million year time scales. For the past 400 years, twin magnetic flux lobes bordering the inner core tangent cylinder in both northern and southern hemispheres dominate the geomagnetic field and appear more or less fixed in location. In contrast, the millennial scale view shows that such features are quite mobile and subject to morphological changes on time scales of a few centuries to a thousand years, possibly reflecting large scale reorganization of core flow. The lobes rarely venture into the Pacific hemisphere, and average fields over various time scales generally reveal two or three sets of lobes, of diminished amplitude. Thus millennial scale models are suggestive of thermal core-mantle coupling generating a weak bias in the average field rather than a strong inhibition of large scale field changes. The recovery of variations in dipole moment on million year time scales allows frequency domain analyses to search for characteristic time scales for core dynamics that might be associated with excursion and reversal rate, time taken for reversals, or any signs of control by Earth's orbital parameters. The spectrum is characteristically red for the time interval 0-160 Ma, suggesting non-stationarity associated with average reversal rate changes, probably reflecting the impact of superchrons and a continually evolving core. Distinct regimes of power law decay with frequency may reflect different physical processes contributing to the secular variation. Evidence for non-stationarity at shorter time-scales is also present in dipole moment variations over 0-2 Ma with average growth rate faster than the decay process. Rates of change of dipole moment and rapid local field variations found in the paleomagnetic record are evaluated in the context of the 400 year historical record and the spectrum of geomagnetic variations for 0-160 Ma. (C) 2011 Elsevier B.V. All rights reserved.

Notes:

n/a

Website

DOI:

10.1016/j.pepi.2011.05.004