Publications

Export 3 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H [I] J K L M N O P Q R S T U V W X Y Z   [Show ALL]
I
Charles, CD, Hunter DE, Fairbanks RG.  1997.  Interaction between the ENSO and the Asian monsoon in a coral record of tropical climate. Science. 277:925-928.   10.1126/science.277.5328.925   AbstractWebsite

The oxygen isotopic composition of a banded coral from the western equatorial Indian Ocean provides a 150-year-long history of the relation between the El Nino-Southern Oscillation (ENSO) phenomenon and the Asian monsoon. Interannual cycles in the coral time series were found to correlate with Pacific coral and instrumental climate records, suggesting a consistent linkage across ocean basins, despite the changing frequency and amplitude of the ENSO. However, decadal variability that is characteristic of the monsoon system also dominates the coral record, which implies important interactions between tropical and midlatitude climate variability. One prominent manifestation of this interaction is the strong amplitude modulation of the quasi-biennial cycle.

Herguera, JC, Herbert T, Kashgarian M, Charles C.  2010.  Intermediate and deep water mass distribution in the Pacific during the Last Glacial Maximum inferred from oxygen and carbon stable isotopes. Quaternary Science Reviews. 29:1228-1245.   10.1016/j.quascirev.2010.02.009   AbstractWebsite

Intermediate ocean circulation changes during the last Glacial Maximum (LGM) in the North Pacific have been linked with Northern Hemisphere climate through air sea interactions, although the extent and the source of the variability of the processes forcing these changes are still not well resolved. The ventilated volumes and ages in the upper wind driven layer are related to the wind stress curl and surface buoyancy fluxes at mid to high latitudes in the North Pacific. In contrast, the deeper thermohaline layers are more effectively ventilated by direct atmosphere-sea exchange during convective formation of Subantarctic Mode Waters (SAMW) and Antarctic Intermediate Waters (AAIW) in the Southern Ocean, the precursors of Pacific Intermediate Waters (PIW) in the North Pacific. Results reported here show a fundamental change in the carbon isotopic gradient between intermediate and deep waters during the LGM in the eastern North Pacific indicating a deepening of nutrient and carbon rich waters. These observations suggest changes in the source and nature of intermediate waters of Southern Ocean origin that feed PIW and enhanced ventilation processes in the North Pacific, further affecting paleoproductivity and export patters in this basin. Furthermore, oxygen isotopic results indicate these changes may have been accomplished in part by changes in circulation affecting the intermediate depths during the LGM. (C) 2010 Elsevier Ltd. All rights reserved.

Shemesh, A, Macko SA, Charles CD, Rau GH.  1993.  Isotopic Evidence for Reduced Productivity in the Glacial Southern-Ocean. Science. 262:407-410.   10.1126/science.262.5132.407   AbstractWebsite

Records of carbon and nitrogen isotopes in biogenic silica and carbon isotopes in planktonic foraminifera from deep-sea sediment cores from the Southern Ocean reveal that the primary production during the last glacial maximum was lower than Holocene productivity. These observations conflict with the hypothesis that the low atmospheric carbon dioxide concentrations were introduced by an increase in the efficiency of the high-latitude biological pump. Instead, different oceanic sectors may have had high glacial productivity, or alternative mechanisms that do not involve the biological pump must be considered as the primary cause of the low glacial atmospheric carbon dioxide concentrations.