Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
Gottschalk, J, Hodell DA, Skinner LC, Crowhurst SJ, Jaccard SL, Charles C.  2018.  Past carbonate preservation events in the deep southeast Atlantic Ocean (Cape Basin) and their implications for atlantic overturning dynamics and marine carbon cycling. Paleoceanography and Paleoclimatology. 33:643-663.   10.1029/2018pa003353   AbstractWebsite

Micropaleontological and geochemical analyses reveal distinct millennial-scale increases in carbonate preservation in the deep Southeast Atlantic (Cape Basin) during strong and prolonged Greenland interstadials that are superimposed on long-term (orbital-scale) changes in carbonate burial. These data suggest carbonate oversaturation of the deep Atlantic and a strengthened Atlantic Meridional Overturning Circulation (AMOC) during the most intense Greenland interstadials. However, proxy evidence from outside the Cape Basin indicates that AMOC changes also occurred during weaker and shorter Greenland interstadials. Here we revisit the link between AMOC dynamics and carbonate saturation in the deep Cape Basin over the last 400 kyr (sediment cores TN057-21,TN057-10, and Ocean Drilling Program Site 1089) by reconstructing centennial changes in carbonate preservation using millimeter-scale X-ray fluorescence (XRF) scanning data. We observe close agreement between variations in XRF Ca/Ti, sedimentary carbonate content, and foraminiferal shell fragmentation, reflecting a common control primarily through changing deep water carbonate saturation. We suggest that the high-frequency (suborbital) component of the XRF Ca/Ti records indicates the fast and recurrent redistribution of carbonate ions in the Atlantic basin via the AMOC during both long/strong and short/weak North Atlantic climate anomalies. In contrast, the low-frequency (orbital) XRF Ca/Ti component is interpreted to reflect slow adjustments through carbonate compensation and/or changes in the deep ocean respired carbon content. Our findings emphasize the recurrent influence of rapid AMOC variations on the marine carbonate system during past glacial periods, providing a mechanism for transferring the impacts of North Atlantic climate anomalies to the global carbon cycle via the Southern Ocean.

Kanfoush, SL, Hodell DA, Charles CD, Janecek TR, Rack FR.  2002.  Comparison of ice-rafted debris and physical properties in ODP Site 1094 (South Atlantic) with the Vostok ice core over the last four climatic cycles. Palaeogeography Palaeoclimatology Palaeoecology. 182:329-349.   10.1016/s0031-0182(01)00502-8   AbstractWebsite

Visual counts of ice-grafted debris (IRD), foraminifera, and radiolaria were made for similar to1500 samples in Site 1094 spanning the last four climatic cycles (marine isotope stages 1-11). Most, but not all, of the IRD variability is captured by whole-core physical properties including magnetic susceptibility and gamma-ray attenuation bulk density. Glacial periods are marked by high IRD abundance and millennial-scale variability, which may reflect instability of ice shelves in the Weddell Sea region. Each interglacial period exhibits low IRD and high foraminiferal abundance during the early part of the interglacial, indicating relatively warm sea-surface temperatures and reduced influence of sea ice. IRD increases and foraminiferal abundances decrease during the latter part of each interglacial, indicating a return to more glacial-like conditions. Glacial terminations I and V are each characterized by a step-wise reduction in ice-rafting punctuated by a brief pulse in IRD delivery and reversal in delta(18)O. The coarse fraction of the sediment is dominated by ash and radiolaria, and the relative abundance of these components is remarkably similar to the concentration of Na+ in Vostok. Each of these variables is believed to be controlled mainly by sea-ice cover, thereby providing a means for sediment-ice core correlation. (C) 2002 Elsevier Science B.V. All rights reserved.