Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
2017
Letzel, AC, Li J, Amos GCA, Millan-Aguinaga N, Ginigini J, Abdelmohsen UR, Gaudencio SP, Ziemert N, Moore BS, Jensen PR.  2017.  Genomic insights into specialized metabolism in the marine actinomycete Salinispora. Environmental Microbiology. 19:3660-3673.   10.1111/1462-2920.13867   AbstractWebsite

Comparative genomics is providing new opportunities to address the diversity and distributions of genes encoding the biosynthesis of specialized metabolites. An analysis of 119 genome sequences representing three closely related species of the marine actinomycete genus Salinispora reveals extraordinary biosynthetic diversity in the form of 176 distinct biosynthetic gene clusters (BGCs) of which only 24 have been linked to their products. Remarkably, more than half of the BGCs were observed in only one or two strains, suggesting they were acquired relatively recently in the evolutionary history of the genus. These acquired gene clusters are concentrated in specific genomic islands, which represent hot spots for BGC acquisition. While most BGCs are stable in terms of their chromosomal position, others migrated to different locations or were exchanged with unrelated gene clusters suggesting a plug and play type model of evolution that provides a mechanism to test the relative fitness effects of specialized metabolites. Transcriptome analyses were used to address the relationships between BGC abundance, chromosomal position and product discovery. The results indicate that recently acquired BGCs can be functional and that complex evolutionary processes shape the micro-diversity of specialized metabolism observed in closely related environmental bacteria.

2016
Schorn, MA, Alanjary MM, Aguinaldo K, Korobeynikov A, Podell S, Patin N, Lincecum T, Jensen PR, Ziemert N, Moore BS.  2016.  Sequencing rare marine actinomycete genomes reveals high density of unique natural product biosynthetic gene clusters. Microbiology-Sgm. 162:2075-2086.   10.1099/mic.0.000386   AbstractWebsite

Traditional natural product discovery methods have nearly exhausted the accessible diversity of microbial chemicals, making new sources and techniques paramount in the search for new molecules. Marine actinomycete bacteria have recently come into the spotlight as fruitful producers of structurally diverse secondary metabolites, and remain relatively untapped. In this study, we sequenced 21 marine-derived actinomycete strains, rarely studied for their secondary metabolite potential and under-represented in current genomic databases. We found that genome size and phylogeny were good predictors of biosynthetic gene cluster diversity, with larger genomes rivalling the well-known marine producers in the Streptomyces and Salinispora genera. Genomes in the Micrococcineae suborder, however, had consistently the lowest number of biosynthetic gene clusters. By networking individual gene clusters into gene cluster families, we were able to computationally estimate the degree of novelty each genus contributed to the current sequence databases. Based on the similarity measures between all actinobacteria in the Joint Genome Institute's Atlas of Biosynthetic gene Clusters database, rare marine genera show a high degree of novelty and diversity, with Corynebacterium, Gordonia, Nocardiopsis, Saccharomonospora and Pseudonocardia genera representing the highest gene cluster diversity. This research validates that rare marine actinomycetes are important candidates for exploration, as they are relatively unstudied, and their relatives are historically rich in secondary metabolites.