Publications

Export 22 results:
Sort by: Author Title Type [ Year  (Desc)]
2018
Moore, BS.  2018.  Asymmetric Alkene and Arene Halofunctionalization Reactions in Meroterpenoid Biosynthesis. Synlett. 29:401-409.   10.1055/s-0036-1590919   AbstractWebsite

Meroterpenoid natural products are important bioactive molecules with broad distribution throughout nature. In Streptomyces bacteria, naphthoquinone-based meroterpenoids comprise a simple yet structurally fascinating group of natural product antibiotics that are enzymatically constructed through a series of asymmetric alkene and arene halofunctionalization reactions. This account article highlights our discovery and characterization of a group of vanadium-dependent chloroperoxidase enzymes that catalyze halogen-assisted cyclization and rearrangement reactions and have inspired biomimetic syntheses of numerous meroterpenoid natural products. 1 Introduction 2 Early Biosynthetic Insights and the Characterization of Alkene Halofunctionalization in Napyradiomycin Biosynthesis 3 Discovery of the Merochlorin Natural Products and Enzymatic Aryl Halofunctionalization 4 Discovery and Development of Unifying THN-Based Meroterpenoid Biosynthesis and Synthesis Approaches 5 Insights into Naphterpin and Marinone Biosynthesis Involving Cryptic Aryl Halofunctionalization Reactions 6 Closing Thoughts

Bruns, H, Crusemann M, Letzel AC, Alanjary M, McInerney JO, Jensen PR, Schulz S, Moore BS, Ziemert N.  2018.  Function-related replacement of bacterial siderophore pathways. Isme Journal. 12:320-329.   10.1038/ismej.2017.137   AbstractWebsite

Bacterial genomes are rife with orphan biosynthetic gene clusters (BGCs) associated with secondary metabolism of unrealized natural product molecules. Often up to a tenth of the genome is predicted to code for the biosynthesis of diverse metabolites with mostly unknown structures and functions. This phenomenal diversity of BGCs coupled with their high rates of horizontal transfer raise questions about whether they are really active and beneficial, whether they are neutral and confer no advantage, or whether they are carried in genomes because they are parasitic or addictive. We previously reported that Salinispora bacteria broadly use the desferrioxamine family of siderophores for iron acquisition. Herein we describe a new and unrelated group of peptidic siderophores called salinichelins from a restricted number of Salinispora strains in which the desferrioxamine biosynthesis genes have been lost. We have reconstructed the evolutionary history of these two different siderophore families and show that the acquisition and retention of the new salinichelin siderophores co- occurs with the loss of the more ancient desferrioxamine pathway. This identical event occurred at least three times independently during the evolution of the genus. We surmise that certain BGCs may be extraneous because of their functional redundancy and demonstrate that the relative evolutionary pace of natural pathway replacement shows high selective pressure against retention of functionally superfluous gene clusters.

2017
Miles, ZD, Diethelm S, Pepper HP, Huang DM, George JH, Moore BS.  2017.  A unifying paradigm for naphthoquinone-based meroterpenoid (bio)synthesis. Nature Chemistry. 9:1235-1242.   10.1038/nchem.2829   AbstractWebsite

Bacterial meroterpenoids constitute an important class of natural products with diverse biological properties and therapeutic potential. The biosynthetic logic for their production is unknown and defies explanation via classical biochemical paradigms. A large subgroup of naphthoquinone-based meroterpenoids exhibits a substitution pattern of the polyketide-derived aromatic core that seemingly contradicts the established reactivity pattern of polyketide phenol nucleophiles and terpene diphosphate electrophiles. We report the discovery of a hitherto unprecedented enzyme-promoted alpha-hydroxyketone rearrangement catalysed by vanadium-dependent haloperoxidases to account for these discrepancies in the merochlorin and napyradiomycin class of meroterpenoid antibiotics, and we demonstrate that the alpha-hydroxyketone rearrangement is potentially a conserved biosynthetic reaction in this molecular class. The biosynthetic alpha-hydroxyketone rearrangement was applied in a concise total synthesis of naphthomevalin, a prominent member of the napyradiomycin meroterpenes, and sheds further light on the mechanism of this unifying enzymatic transformation.

Zhang, JJ, Tang XY, Zhang M, Nguyen D, Moore BS.  2017.  Broad-host-range expression reveals native and host regulatory elements that influence heterologous antibiotic production in gram-negative bacteria. Mbio. 8   10.1128/mBio.01291-17   AbstractWebsite

Heterologous expression has become a powerful tool for studying microbial biosynthetic gene clusters (BGCs). Here, we extend the transformation-associated recombination cloning and heterologous expression platform for microbial BGCs to include Gram-negative proteobacterial expression hosts. Using a broad-hostrange expression platform, we test the implicit assumption that biosynthetic pathways are more successfully expressed in more closely related heterologous hosts. Cloning and expression of the violacein BGC from Pseudoalteromonas luteoviolacea 2ta16 revealed robust production in two proteobacterial hosts, Pseudomonas putida KT2440 and Agrobacterium tumefaciens LBA4404, but very little production of the antibiotic in various laboratory strains of Escherichia coli, despite their closer phylogenetic relationship. We identified a nonclustered LuxR-type quorum-sensing receptor from P. luteoviolacea 2ta16, PviR, that increases pathway transcription and violacein production in E. coli by similar to 60-fold independently of acyl-homoserine lactone autoinducers. Although E. coli harbors the most similar homolog of PviR identified from all of the hosts tested, overexpression of various E. coli transcription factors did not result in a statistically significant increase in violacein production, while overexpression of two A. tumefaciens PviR homologs significantly increased production. Thus, this work not only introduces a new genetic platform for the heterologous expression of microbial BGCs, it also challenges the assumption that host phylogeny is an accurate predictor of host compatibility. IMPORTANCE Although Gram-positive heterologous hosts such as Streptomyces have been developed and optimized to support diverse secondary metabolic reactions, there has been comparatively less work on Gram-negative hosts, some of which grow faster and are easier to work with. This work presents a new genetic platform for direct cloning and broad-host-range heterologous expression of BGCs in Gram-negative proteobacterial expression hosts, and we leverage this platform to uncover regulatory elements that influence violacein expression from Pseudoalteromonas. Although it is often assumed that BGCs will be more successfully expressed in more closely related hosts, our work suggests that this may not be a general rule of thumb, as heterologous production of natural products can be influenced by specific host regulatory and/or biosynthetic elements, and the identity and effectiveness of those elements are difficult to predict. We argue for the use of a diverse set of heterologous hosts, which may also provide insights into BGC mechanism and function.

Letzel, AC, Li J, Amos GCA, Millan-Aguinaga N, Ginigini J, Abdelmohsen UR, Gaudencio SP, Ziemert N, Moore BS, Jensen PR.  2017.  Genomic insights into specialized metabolism in the marine actinomycete Salinispora. Environmental Microbiology. 19:3660-3673.   10.1111/1462-2920.13867   AbstractWebsite

Comparative genomics is providing new opportunities to address the diversity and distributions of genes encoding the biosynthesis of specialized metabolites. An analysis of 119 genome sequences representing three closely related species of the marine actinomycete genus Salinispora reveals extraordinary biosynthetic diversity in the form of 176 distinct biosynthetic gene clusters (BGCs) of which only 24 have been linked to their products. Remarkably, more than half of the BGCs were observed in only one or two strains, suggesting they were acquired relatively recently in the evolutionary history of the genus. These acquired gene clusters are concentrated in specific genomic islands, which represent hot spots for BGC acquisition. While most BGCs are stable in terms of their chromosomal position, others migrated to different locations or were exchanged with unrelated gene clusters suggesting a plug and play type model of evolution that provides a mechanism to test the relative fitness effects of specialized metabolites. Transcriptome analyses were used to address the relationships between BGC abundance, chromosomal position and product discovery. The results indicate that recently acquired BGCs can be functional and that complex evolutionary processes shape the micro-diversity of specialized metabolism observed in closely related environmental bacteria.

Tang, XY, Li J, Moore BS.  2017.  Minimization of the thiolactomycin biosynthetic pathway reveals that the cytochrome p450 enzyme tlmf is required for five-membered thiolactone ring formation. Chembiochem. 18:1072-1076.   10.1002/cbic.201700090   AbstractWebsite

Thiolactomycin (TLM) belongs to a class of rare and unique thiotetronate antibiotics that inhibit bacterial fatty acid synthesis. Although this group of natural product antibiotics was first discovered over 30 years ago, the study of TLM biosynthesis remains in its infancy. We recently discovered the biosynthetic gene cluster (BGC) for TLM from the marine bacterium Salinispora pacifica CNS-863. Here, we report the investigation of TLM biosynthetic logic through mutagenesis and comparative metabolic analyses. Our results revealed that only four genes (tlmF, tlmG, tlmH, and tlmI) are required for the construction of the characteristic -thiolactone skeleton of this class of antibiotics. We further showed that the cytochrome P450 TlmF does not directly participate in sulfur insertion and C-S bond formation chemistry but rather in the construction of the five-membered thiolactone ring as, upon its deletion, we observed the alternative production of the six-membered -thiolactomycin. Our findings pave the way for future biochemical investigation of the biosynthesis of this structurally unique group of thiotetronic acid natural products.

Larson, CB, Crusemann M, Moore BS.  2017.  PCR-independent method of transformation-associated recombination reveals the cosmomycin biosynthetic gene cluster in an ocean streptomycete. Journal of Natural Products. 80:1200-1204.   10.1021/acs.jnatprod.6b01121   AbstractWebsite

The transformation-associated recombination cloning methodology facilitates the genomic capture and heterologous expression of natural product biosynthetic gene clusters (BGCs). We have streamlined this procedure by introduction of synthetic DNA gene blocks for the efficient capture of BGCs. We show the successful capture and expression of the aromatic polyketide antitumor agent cosmomycin from streptomycete bacteria and the discovery of new cosmomycin analogues by mass spectral molecular networking.

Patin, NV, Schorn M, Aguinaldo K, Lincecum T, Moore BS, Jensen PR.  2017.  Effects of actinomycete secondary metabolites on sediment microbial communities. Applied and Environmental Microbiology. 83   10.1128/aem.02676-16   Abstract

Marine sediments harbor complex microbial communities that remain poorly studied relative to other biomes such as seawater. Moreover, bacteria in these communities produce antibiotics and other bioactive secondary metabolites, yet little is known about how these compounds affect microbial community structure. In this study, we used next-generation amplicon sequencing to assess native microbial community composition in shallow tropical marine sediments. The results revealed complex communities comprised of largely uncultured taxa, with considerable spatial heterogeneity and known antibiotic producers comprising only a small fraction of the total diversity. Organic extracts from cultured strains of the sedimentdwelling actinomycete genus Salinispora were then used in mesocosm studies to address how secondary metabolites shape sediment community composition. We identified predatory bacteria and other taxa that were consistently reduced in the extract-treated mesocosms, suggesting that they may be the targets of allelopathic interactions. We tested related taxa for extract sensitivity and found general agreement with the culture-independent results. Conversely, several taxa were enriched in the extract-treated mesocosms, suggesting that some bacteria benefited from the interactions. The results provide evidence that bacterial secondary metabolites can have complex and significant effects on sediment microbial communities. IMPORTANCE Ocean sediments represent one of Earth's largest and most poorly studied biomes. These habitats are characterized by complex microbial communities where competition for space and nutrients can be intense. This study addressed the hypothesis that secondary metabolites produced by the sediment-inhabiting actinomycete Salinispora arenicola affect community composition and thus mediate interactions among competing microbes. Next-generation amplicon sequencing of mesocosm experiments revealed complex communities that shifted following exposure to S. arenicola extracts. The results reveal that certain predatory bacteria were consistently less abundant following exposure to extracts, suggesting that microbial metabolites mediate competitive interactions. Other taxa increased in relative abundance, suggesting a benefit from the extracts themselves or the resulting changes in the community. This study takes a first step toward assessing the impacts of bacterial metabolites on sediment microbial communities. The results provide insight into how low-abundance organisms may help structure microbial communities in ocean sediments.

2016
Groenhagen, U, De Oliveira ALL, Fielding E, Moore BS, Schulz S.  2016.  Coupled biosynthesis of volatiles and salinosporamideA in Salinispora tropica. Chembiochem. 17:1978-1985.   10.1002/cbic.201600388   AbstractWebsite

Terrestrial bacteria, especially actinomycetes, are known to be prolific producers of volatile compounds. We show here that bacteria from ocean sediments can also release complex bouquets of volatiles. The actinomycete Salinispora tropica produces cyclohexenyl compounds not previously known in nature, such as methyl cyclohex-2-ene-1-carboxylate (9), methyl 2-(cyclohex-2-en-1-yl)acetate (10), methyl (E/Z)-2-(cyclohex-2-en-1-ylidene)acetate (11/12), and related alcohols 8 and 13. These compounds were identified by GC/MS and confirmed by synthesis. In addition, rare spiroacetals, aromatic compounds, short-chain acids and esters, alcohols, and various cyclic compounds were produced by the bacteria. The biosynthesis of the cyclohexenyl compounds is closely coupled to that of cyclohexenylalanine (4), a building block of salinosporamideA, a proteasome inhibitor produced by S.tropica. Analysis of S.tropica strains that harbor knockouts of the salinosporamide biosynthetic genes salX and salD, coupled with feeding experiments, revealed that 3-(cyclohex-2-en-1-yl)-2-oxopropanoic acid (60) and 3-(cyclohex-2-en-1-ylidene)-2-oxopropanoic acid (isomers 61 and 62) are important intermediates in the biosynthesis of salinosporamideA, 4, and 8-13.

Teufel, R, Agarwal V, Moore BS.  2016.  Unusual flavoenzyme catalysis in marine bacteria. Current Opinion in Chemical Biology. 31:31-39.   10.1016/j.clopa.2016.01.001   AbstractWebsite

Ever since the discovery of the flavin cofactor more than 80 years ago, flavin-dependent enzymes have emerged as ubiquitous and versatile redox catalysts in primary metabolism. Yet, the recent advances in the discovery and characterization of secondary metabolic pathways exposed new roles for flavin-mediated catalysis in the generation of structurally complex natural products. Here, we review a selection of key biosynthetic flavoenzymes from marine bacterial secondary metabolism and illustrate how their functional and mechanistic investigation expanded our view of the cofactor's chemical repertoire and led to the discovery of a previously unknown flavin redox state.

2014
Agarwal, V, El Gamal AA, Yamanaka K, Poth D, Kersten RD, Schorn M, Allen EE, Moore BS.  2014.  Biosynthesis of polybrominated aromatic organic compounds by marine bacteria. Nature Chemical Biology. 10:640-U182.   10.1038/nchembio.1564   AbstractWebsite

Polybrominated diphenyl ethers (PBDEs) and polybrominated bipyrroles are natural products that bioaccumulate in the marine food chain. PBDEs have attracted widespread attention because of their persistence in the environment and potential toxicity to humans. However, the natural origins of PBDE biosynthesis are not known. Here we report marine bacteria as producers of PBDEs and establish a genetic and molecular foundation for their production that unifies paradigms for the elaboration of bromophenols and bromopyrroles abundant in marine biota. We provide biochemical evidence of marine brominases revealing decarboxylative-halogenation enzymology previously unknown among halogenating enzymes. Biosynthetic motifs discovered in our study were used to mine sequence databases to discover unrealized marine bacterial producers of organobromine compounds.

Mohimani, H, Liu WT, Kersten RD, Moore BS, Dorrestein PC, Pevzner PA.  2014.  NRPquest: Coupling mass spectrometry and genome mining for nonribosomal peptide discovery. Journal of Natural Products. 77:1902-1909.   10.1021/np500370c   AbstractWebsite

Nonribosomal peptides (NRPs) such as vancomycin and daptomycin are among the most effective antibiotics. While NRPs are biomedically important, the computational techniques for sequencing these peptides are still in their infancy. The recent emergence of mass spectrometry techniques for NRP analysis (capable of sequencing an NRP from small amounts of nonpurified material) revealed an enormous diversity of NRPs. However, as many NRPs have nonlinear structure (e.g., cyclic or branched-cyclic peptides), the standard de novo sequencing tools (developed for linear peptides) are not applicable to NRP analysis. Here, we introduce the first NRP identification algorithm, NRPquest, that performs mutation-tolerant and modification-tolerant searches of spectral data sets against a database of putative NRPs. In contrast to previous studies aimed at NRP discovery (that usually report very few NRPs), NRPquest revealed nearly a hundred NRPs (including unknown variants of previously known peptides) in a single study. This result indicates that NRPquest can potentially make MS-based NRP identification as robust as the identification of linear peptides in traditional proteomics.

2012
Watrous, J, Roach P, Alexandrov T, Heath BS, Yang JY, Kersten RD, van der Voort M, Pogliano K, Gross H, Raaijmakers JM, Moore BS, Laskin J, Bandeira N, Dorrestein PC.  2012.  Mass spectral molecular networking of living microbial colonies. Proceedings of the National Academy of Sciences of the United States of America. 109:E1743-E1752.   10.1073/pnas.1203689109   AbstractWebsite

Integrating the governing chemistry with the genomics and phenotypes of microbial colonies has been a "holy grail" in microbiology. This work describes a highly sensitive, broadly applicable, and cost-effective approach that allows metabolic profiling of live microbial colonies directly from a Petri dish without any sample preparation. Nanospray desorption electrospray ionization mass spectrometry (MS), combined with alignment of MS data and molecular networking, enabled monitoring of metabolite production from live microbial colonies from diverse bacterial genera, including Bacillus subtilis, Streptomyces coelicolor, Mycobacterium smegmatis, and Pseudomonas aeruginosa. This work demonstrates that, by using these tools to visualize small molecular changes within bacterial interactions, insights can be gained into bacterial developmental processes as a result of the improved organization of MS/MS data. To validate this experimental platform, metabolic profiling was performed on Pseudomonas sp. SH-C52, which protects sugar beet plants from infections by specific soil-borne fungi [R. Mendes et al. (2011) Science 332: 1097-1100]. The antifungal effect of strain SHC52 was attributed to thanamycin, a predicted lipopeptide encoded by a nonribosomal peptide synthetase gene cluster. Our technology, in combination with our recently developed peptidogenomics strategy, enabled the detection and partial characterization of thanamycin and showed that it is a monochlorinated lipopeptide that belongs to the syringomycin family of antifungal agents. In conclusion, the platform presented here provides a significant advancement in our ability to understand the spatiotemporal dynamics of metabolite production in live microbial colonies and communities.

Kaysser, L, Bernhardt P, Nam SJ, Loesgen S, Ruby JG, Skewes-Cox P, Jensen PR, Fenical W, Moore BS.  2012.  Merochlorins A-D, Cyclic Meroterpenoid Antibiotics Biosynthesized in Divergent Pathways with Vanadium-Dependent Chloroperoxidases. Journal of the American Chemical Society. 134:11988-11991.   10.1021/ja305665f   AbstractWebsite

Meroterpenoids are mixed polyketide-terpenoid natural products with a broad range of biological activities. Herein, we present the structures of four new meroterpenoid antibiotics, merochlorins A-D, produced by the marine bacterium Streptomyces sp. strain CNH-189, which possess novel chemical skeletons unrelated to known bacterial agents. Draft genome sequencing, mutagenesis, and heterologous biosynthesis in the genome-minimized model actinomycete Streptomyces coelicolor provided the 57.6 kb merochlorin gene cluster that contains two genes encoding rare bacterial vanadium-dependent haloperoxidase (VHPO) genes. Pathway expression of two different fosmid clones that differ largely by the presence or absence of the VHPO gene mcl40 resulted in the differential biosynthesis of merochlorin C, suggesting that Mcl40 catalyzes an unprecedented 15-membered chloronium-induced macrocyclization reaction converting merochlorin D to merochlorin C.

Pereira, AR, Kale AJ, Fenley AT, Byrum T, Debonsi HM, Gilson MK, Valeriote FA, Moore BS, Gerwick WH.  2012.  The Carmaphycins: New Proteasome Inhibitors Exhibiting an alpha,beta-Epoxyketone Warhead from a Marine Cyanobacterium. Chembiochem. 13:810-817.   Doi 10.1002/Cbic.201200007   AbstractWebsite

Two new peptidic proteasome inhibitors were isolated as trace components from a Curacao collection of the marine cyanobacterium Symploca sp. Carmaphycin A (1) and carmaphycin B (2) feature a leucine-derived a,beta-epoxyketone warhead directly connected to either methionine sulfoxide or methionine sulfone. Their structures were elucidated on the basis of extensive NMR and MS analyses and confirmed by total synthesis, which in turn provided more material for further biological evaluations. Pure carmaphycins A and B were found to inhibit the beta 5 subunit (chymotrypsin-like activity) of the S. cerevisiae 20S proteasome in the low nanomolar range. Additionally, they exhibited strong cytotoxicity to lung and colon cancer cell lines, as well as exquisite antiproliferative effects in the NCI60 cell-line panel. These assay results as well as initial structural biology studies suggest a distinctive binding mode for these new inhibitors.

Chen, ZH, Wang BL, Kale AJ, Moore BS, Wang RW, Qing FL.  2012.  Coupling of sterically hindered aldehyde with fluorinated synthons: Stereoselective synthesis of fluorinated analogues of salinosporamide A. Journal of Fluorine Chemistry. 136:12-19.   10.1016/j.jfluchem.2012.01.003   AbstractWebsite

Salinosporamide A is an irreversible inhibitor of the beta-subunits of the 20S proteasome. Its C-5 cyclohexenyl moiety is the key to its affinity and potency as an anticancer agent. Here we describe the synthesis of C-5 difluoromethylated and trifluoromethylated analogues of salinosporamide A and their biological evaluation as proteasome inhibitors against purified yeast 20S proteasome. The synthetic strategy featured the stereoselective coupling reaction of sterically hindered aldehyde 3 with fluorinated organolithium reagents. (C) 2012 Elsevier B.V. All rights reserved.

2011
Liu, WT, Kersten RD, Yang YL, Moore BS, Dorrestein PC.  2011.  Imaging Mass Spectrometry and Genome Mining via Short Sequence Tagging Identified the Anti-Infective Agent Arylomycin in Streptomyces roseosporus. Journal of the American Chemical Society. 133:18010-18013.   10.1021/ja2040877   AbstractWebsite

Here, we described the discovery of anti-infective agent arylomycin and its biosynthetic gene cluster in an industrial daptomycin producing strain Streptomyces roseosporus. This was accomplished via the use of MALDI imaging mass spectrometry (IMS) along with peptidogenomic approach in which we have expanded to short sequence tagging (SST) described herein. Using IMS, we observed that prior to the production of daptomycin, a cluster of ions (1-3) was produced by S. roseosporus and correlated well with the decreased staphylococcal cell growth. With a further adopted SST peptidogenomics approach, which relies on the generation of sequence tags from tandem mass spectrometric data and query against genomes to identify the biosynthetic genes, we were able to identify these three molecules (1-3) to arylomycins, a class of broad-spectrum antibiotics that target type I signal peptidase. The gene cluster was then identified. This highlights the strength of IMS and MS guided genome mining approaches in effectively bridging the gap between phenotypes, chemotypes, and genotypes.

2010
Werneburg, M, Busch B, He J, Richter MEA, Xiang LK, Moore BS, Roth M, Dahse HM, Hertweck C.  2010.  Exploiting Enzymatic Promiscuity to Engineer a Focused Library of Highly Selective Antifungal and Antiproliferative Aureothin Analogues. Journal of the American Chemical Society. 132:10407-10413.   10.1021/ja102751h   AbstractWebsite

Aureothin is a shikimate-polyketide hybrid metabolite from Streptomyces thioluteus with a rare nitroaryl moiety, a chiral tetrahydrofuran ring, and an O-methylated pyrone ring. The antimicrobial and antitumor activities of aureothin have caught our interest in modulating its structure as well as its bioactivity profile. In an integrated approach using mutasynthesis, biotransformation, and combinatorial biosynthesis, a defined library of aureothin analogues was generated. The promiscuity of the polyketide synthase assembly line toward different starter units and the plasticity of the pyrone and tetrahydrofuran ring formation were exploited. A selection of 15 new aureothin analogues with modifications at the aryl residue, the pyrone ring, and the oxygenated backbone was produced on a preparative scale and fully characterized. Remarkably, various new aureothin derivatives are less cytotoxic than aureothin but have improved antiproliferative activities. Furthermore, we found that the THF ring is crucial for the remarkably selective activity of aureothin analogues against certain pathogenic fungi.

2008
Schultz, AW, Oh DC, Carney JR, Williamson RT, Udwary DW, Jensen PR, Gould SJ, Fenical W, Moore BS.  2008.  Biosynthesis and structures of cyclomarins and cyclomarazines, prenylated cyclic peptides of marine actinobacterial origin. Journal of the American Chemical Society. 130:4507-4516.   10.1021/ja711188x   AbstractWebsite

Two new diketopiperazine dipeptides, cyclomarazines A and B, were isolated and characterized along with the new cyclic heptapeptide cyclomarin D from the marine bacterium Salinispora arenicola CNS-205. These structurally related cyclic peptid es each contain modified amino acid residues, including derivatives of N-(1,1-dimethylallyl)-tryptophan and delta-hydroxyleucine, which are common in the di- and heptapeptide series. Stable isotope incorporation studies in Streptomyces sp. CNB-982, which was first reported to produce the cyclomarin anti-inflammatory agents, illuminated the biosynthetic building blocks associated with the major metabolite cyclomarin A, signifying that this marine microbial peptide is nonribosomally derived largely from nonproteinogenic amino acid residues. DNA sequence analysis of the 5.8 Mb S. arenicola circular genome and PCR-targeted gene inactivation experiments identified the 47 kb cyclomarin/cyclomarazine biosynthetic gene cluster (cym) harboring 23 open reading frames. The cym locus is dominated by the 23 358 bp cymA, which encodes a 7-module nonribosomal pepticle synthetase (NRPS) responsible for assembly of the full-length cyclomarin heptapeptides as well as the truncated cyclomarazine dipeptides. The unprecedented biosynthetic feature of the megasynthetase CymA to synthesize differently sized peptides in vivo may be triggered by the level of P oxidation of the priming tryptophan residue, which is oxidized in the cyclomarin series and unoxidized in the cyclomarazines. Biosynthesis of the N-(1;1-dimethyl-2,3-epoxypropyl)-beta-hydroxytryptophan residue of cyclomarin A was further illuminated through gene inactivation experiments, which suggest that the tryptophan residue is reverse prenylated by CymD prior to release of the cyclic peptide from the CymA megasynthetase, whereas the cytochrome P450 CymV installs the epoxide group on the isoprene of cyclomarin C post-NRPS assembly. Last, the novel amino acid residue 2-amino-3,5-dimethylhex-4-enoic acid in the cyclomarin series was shown by bioinformatics and stable isotope experiments to derive from a new pathway involving condensation of isobutyralclehyde and pyruvate followed by S-adenosylmethionine methylation. Assembly of this unsaturated, branched amino acid is unexpectedly related to the degradation of the environmental pollutant 3-(3-hydroxyphenyl)propionic acid.

2007
Udwary, DW, Zeigler L, Asolkar RN, Singan V, Lapidus A, Fenical W, Jensen PR, Moore BS.  2007.  Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica. Proceedings of the National Academy of Sciences of the United States of America. 104:10376-10381.   10.1073/pnas.0700962104   AbstractWebsite

Recent fermentation studies have identified actinomycetes of the marine-dwelling genus Salinispora as prolific natural product producers. To further evaluate their biosynthetic potential, we sequenced the 5,183,331-bp S. tropica CNB-440 circular genome and analyzed all identifiable secondary natural product gene clusters. Our analysis shows that S. tropica dedicates a large percentage of its genome (approximate to 9.9%) to natural product assembly, which is greater than previous Streptomyces genome sequences as well as other natural product-producing actinomycetes. The S. tropica genome features polyketide synthase systems of every known formally classified family, nonribosomal peptide synthetases, and several hybrid clusters. Although a few clusters appear to encode molecules previously identified in Streptomyces species, the majority of the 17 biosynthetic loci are novel. Specific chemical information about putative and observed natural product molecules is presented and discussed. In addition, our bioinformatic analysis not only was critical for the structure elucidation of the polyene macrolactam salinilactam A, but its structural analysis aided the genome assembly of the highly repetitive slm loci. This study firmly establishes the genus Salinispora as a rich source of drug-like molecules and importantly reveals the powerful interplay between genomic analysis and traditional natural product isolation studies.

2000
Moore, BS, Piel J.  2000.  Engineering biodiversity with type II polyketide synthase genes. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology. 78:391-398. AbstractWebsite

A very important task in the ongoing search for new clinically useful drugs is the generation of large numbers of structurally diverse compounds. The emerging field of combinatorial biosynthesis, in which nature's chemical capabilities are exploited in a combinatorial `mix-and-match' fashion, has generated libraries of novel molecules representing great structural diversity which are not available naturally or readily generated through (combinatorial) synthesis. Novel polyketides have been generated by manipulating type II iterative polyketide synthase (PKS) systems that express a variety of combinations of a minimal PKS with ketoreductases, cyclases, and other tailoring enzymes, resulting in a set of design rules to rationally engineer new metabolites. Engineering studies with the Streptomyces coelicolor whiE (spore pigment) and the `Streptomyces maritimus' enterocin type II PKS provide additional insight on designing diverse assemblies of aromatic, as well as nonaromatic, polyketides.

1999
Shen, YM, Yoon P, Yu TW, Floss HG, Hopwood D, Moore BS.  1999.  Ectopic expression of the minimal whiE polyketide synthase generates a library of aromatic polyketides of diverse sizes and shapes. Proceedings of the National Academy of Sciences of the United States of America. 96:3622-3627.   10.1073/pnas.96.7.3622   AbstractWebsite

The single recombinant expressing the Streptomyces coelicolor minimal whiE (spore pigment) polyketide synthase (PKS) is uniquely capable of generating a large array of well more than 30 polyketides, many of which, so far, are novel to this recombinant. The characterized polyketides represent a diverse set of molecules that differ in size (chain length) and shape (cyclization pattern). This combinatorial biosynthetic library is, by far, the largest and most complex of its kind described to date and indicates that the minimal whiE PKS does not independently control polyketide chain length nor dictate the first cyclization event. Rather, the minimal PKS enzyme complex must rely on the stabilizing effects of additional subunits (i.e., the cyclase whiE-ORFVI) to ensure that the chain reaches the full 24 carbons and cyclizes correctly. This dramatic loss of control implies that the growing polyketide chain does not remain enzyme bound, resulting in the spontaneous cyclization of the methyl terminus. Among the six characterized dodecaketides, four different first-ring cyclization regiochemistries are represented, including C7/C12, C8/C13, C10/C15, and C13/C15. The dodecaketide TW93h possesses a unique 2,4-dioxaadamantane ring system and represents a new structural class of polyketides with no related structures isolated from natural or engineered organisms, thus supporting the claim that engineered biosynthesis is capable of producing novel chemotypes.