Export 4 results:
Sort by: Author Title Type [ Year  (Desc)]
Palenik, B.  2015.  Molecular mechanisms by which marine phytoplankton respond to their dynamic chemical environment. Annual Review of Marine Science, Vol 7. 7:325-340.   10.1146/annurev-marine-010814-015639   AbstractWebsite

Marine scientists have long been interested in the interactions of marine phytoplankton with their chemical environments. Nutrient availability clearly controls carbon fixation on a global scale, but the interactions between phytoplankton and nutrients are complex and include both short-term responses (seconds to minutes) and longer-term evolutionary adaptations. This review outlines how genomics and functional genomics approaches are providing a better understanding of these complex interactions, especially for cyanobacteria and diatoms, for which the genome sequences of multiple model organisms are available. Transporters and related genes are emerging as the most likely candidates for biomarkers in stress-specific studies, but other genes are also possible candidates. One surprise has been the important role of horizontal gene transfer in mediating chemical-biological interactions.

Gutierrez-Rodriguez, A, Slack G, Daniels EF, Selph KE, Palenik B, Landry MR.  2014.  Fine spatial structure of genetically distinct picocyanobacterial populations across environmental gradients in the Costa Rica Dome. Limnology and Oceanography. 59:705-723.   10.4319/lo.2014.59.3.0705   AbstractWebsite

We investigated the spatial variability of picocyanobacterial community structure across the Costa Rica Dome (CRD), an offshore upwelling system characterized by high seasonal abundance of Synechococcus spp. We constructed clone libraries of the rpoC1 gene to survey picocyanobacterial diversity and developed specific real-time quantitative polymerase chain reaction assays to assess the distribution of genetically distinct Synechococcus (SYN) and Prochlorococcus (PRO) populations across vertical and horizontal physicochemical gradients. Flow cytometry data showed that cell abundances for both SYN and PRO were highest near the dome center. Phylogenetic analysis of rpoC1 sequences revealed a remarkably high and distinctive picocyanobacterial diversity (FLU1-3, CRD1, Clade II, XV, XVI) that included "novel'' SYN and PRO genotypes. Furthermore, genetically different populations exhibited vertical and horizontal spatial partitioning. Abundances of distinct SYN genotypes peaked at subsequent depth horizons, leading to a fine vertical structure with at least three populations stacked within the upper 30-40 m at the dome. Clade II and FLU1A peaked in surface waters, while maximum concentrations of CRD1, FLU1B, and Clade XVI occurred in the upper and lower thermocline, respectively. Horizontally, Clade II abundance in surface waters remained high across the entire region, while SYN genotypes CRD1 and FLU1A increased with shoaling of the thermo- and nutricline toward the center of the dome to become the dominant genotypes of the SYN assemblage in the dome. Below the mixed layer, Clade XVI and PRO genotype FLU2, virtually absent outside the dome, became abundant components of the picocyanobacterial assemblage. Despite their phylogenetic relatedness, FLU1A and FLU1B subclades followed different distributional patterns, suggesting ecological significance of the microdiversity within the clade. The unprecedented fine vertical structure demonstrated for SYN genotypes is driven by sharp physicochemical gradients (e.g., density, nutrient, oxygen, and trace metals) created by the dome and the presence of a shallow oxycline that enhances habitat diversification.

Stuart, RK, Brahamsha B, Busby K, Palenik B.  2013.  Genomic island genes in a coastal marine Synechococcus strain confer enhanced tolerance to copper and oxidative stress. Isme Journal. 7:1139-1149.   10.1038/ismej.2012.175   AbstractWebsite

Highly variable regions called genomic islands are found in the genomes of marine picocyano-bacteria, and have been predicted to be involved in niche adaptation and the ecological success of these microbes. These picocyanobacteria are typically highly sensitive to copper stress and thus, increased copper tolerance could confer a selective advantage under some conditions seen in the marine environment. Through targeted gene inactivation of genomic island genes that were known to be upregulated in response to copper stress in Synechococcus sp. strain CC9311, we found two genes (sync_1495 and sync_1217) conferred tolerance to both methyl viologen and copper stress in culture. The prevalence of one gene, sync_1495, was then investigated in natural samples, and had a predictable temporal variability in abundance at a coastal monitoring site with higher abundance in winter months. Together, this shows that genomic island genes can confer an adaptive advantage to specific stresses in marine Synechococcus, and may help structure their population diversity.

Tetu, SG, Brahamsha B, Johnson DA, Tai V, Phillippy K, Palenik B, Paulsen IT.  2009.  Microarray analysis of phosphate regulation in the marine cyanobacterium Synechococcus sp WH8102. ISME Journal. 3:835-849.   10.1038/ismej.2009.31   AbstractWebsite

Primary productivity of open ocean environments, such as those inhabited by marine picocyanobacteria, is often limited by low inorganic phosphate (P). To observe how these organisms cope with P starvation, we constructed a full genome microarray for Synechococcus sp. WH8102 and compared differences in gene expression under P-replete and P-limited growth conditions, including both early P stress, during extracellular alkaline phosphatase induction, and late P stress. A total of 36 genes showed significant upregulation (>log(2) fold) whereas 23 genes were highly downregulated at the early time point; however, these changes in expression were maintained during late P stress for only 5 of the upregulated genes. Knockout mutants were constructed for genes SYNW0947 and SYNW0948, comprising a two-component regulator hypothesized to have a key function in regulating P metabolism. A high degree of overlap in the sets of genes affected by P stress conditions and in the knockout mutants supports this hypothesis; however, there is some indication that other regulators may be involved in this response in Synechococcus sp. WH8102. Consistent with what has been observed in many other cyanobacteria, the Pho regulon of this strain is comprised largely of genes for alkaline phosphatases, P transport or P metabolism. Interestingly, however, the exact composition and arrangement of the Pho regulon appears highly variable in marine cyanobacteria. The ISME Journal (2009) 3, 835-849; doi: 10.1038/ismej.2009.31; published online 2 April 2009