Publications

Export 151 results:
Sort by: Author Title Type [ Year  (Asc)]
2007
Kim, SY, Terrill E, Cornuelle B.  2007.  Objectively mapping HF radar-derived surface current data using measured and idealized data covariance matrices. Journal of Geophysical Research-Oceans. 112   10.1029/2006jc003756   AbstractWebsite

Surface currents measured by high-frequency radars are objectively mapped using covariance matrices computed from hourly surface current vectors spanning two years. Since retrievals of surface radial velocities are inherently gappy in space and time, the irregular density of surface current data leads to negative eigenvalues in the sample covariance matrix. The number and the magnitude of the negative eigenvalues depend on the degree of data continuity used in the matrix computation. In a region of 90% data coverage, the negative eigenvalues of the sample covariance matrix are small enough to be removed by adding a noise term to the diagonal of the matrix. The mapping is extended to regions of poorer data coverage by applying a smoothed covariance matrix obtained by spatially averaging the sample covariance matrix. This approach estimates a stable covariance matrix of surface currents for regions with the intermittent radar coverage. An additional benefit is the removal of baseline errors that often exist between two radar sites. The covariance matrices and the correlation functions of the surface currents are exponential in space rather than Gaussian, as is often assumed in the objective mapping of oceanographic data sets. Patterns in the decorrelation length scale provide the variabilities of surface currents and the insights on the influence of topographic features (bathymetry and headlands). The objective mapping approach presented herein lends itself to various applications, including the Lagrangian transport estimates, dynamic analysis through divergence and vorticity of current vectors, and statistical models of surface currents.

2008
Worcester, P, Dushaw BD, Andrew RK, Howe BM, Mercer JA, Spindel RC, Cornuelle B, Dzieciuch M, Birdsall TG, Metzger K, Menemenlis D.  2008.  A decade of acoustic thermometry in the North Pacific Ocean: Using long-range acoustic travel times to test gyre-scale temperature variability derived from other observations and ocean models. Journal of the Acoustical Society of America. 123 AbstractWebsite

Large-scale, range- and depth-averaged temperatures in the North Pacific Ocean were measured by long-range acoustic transmissions over the decade 1996-2006. Acoustic sources off central California and north of Kauai transmitted to receivers throughout the North Pacific. Even though acoustic travel times are spatially integrating, suppressing mesoscale variability and providing a precise measure of large-scale temperature, the travel times sometimes vary significantly on time scales of only a few weeks. The interannual variability is large, with no consistent warming or cooling trends. Comparison of the measured travel times with travel times derived from (i) the World Ocean Atlas 2005 (WOA05), (ii) an upper ocean temperature estimate derived from satellite altimetry and in situ profiles, (iii) an analysis provided by the Estimating the Circulation and Climate of the Ocean (ECCO) project, and (iv) simulation results from a high-resolution configuration of the Parallel Ocean Program (POP) show similarities, but also reveal substantial differences. The differences suggest that the data can provide significant additional constraints for numerical ocean simulations. The acoustic data show that WOA05 is a much better estimate of the time-mean hydrography than either the ECCO or POP estimates and provide significantly better time resolution for large-scale ocean variability than can be derived from satellite altimetry and in situ profiles.

Roux, P, Cornuelle BD, Kuperman WA, Hodgkiss WS.  2008.  The structure of raylike arrivals in a shallow-water waveguide. Journal of the Acoustical Society of America. 124:3430-3439.   10.1121/1.2996330   AbstractWebsite

Acoustic remote sensing of the oceans requires a detailed understanding of the acoustic forward problem. The results of a shallow-water transmission experiment between a vertical array of sources and a vertical array of receivers are reported. The source array is used to provide additional degrees of freedom to isolate and track raylike arrivals by beamforming over both source and receiver arrays. The coordinated source-receiver array processing procedure is presented and its effectiveness in an example of tracking raylike arrivals in a fluctuating ocean environment is shown. Many of these arrivals can be tracked over an hour or more and show slowly varying amplitude and phase. The use of a double-beamforming algorithm lays the foundation for shallow-water acoustic remote sensing using travel time and source and receive angles of selected eigenrays. (C) 2008 Acoustical Society of America. [DOI: 10.1121/1.2996330]

Hoteit, I, Cornuelle B, Thierry V, Stammer D.  2008.  Impact of resolution and optimized ECCO forcing on Simulations of the tropical pacific. Journal of Atmospheric and Oceanic Technology. 25:131-147.   10.1175/2007jtecho528.1   AbstractWebsite

The sensitivity of the dynamics of a tropical Pacific Massachusetts Institute of Technology (MIT) general circulation model (MITgcm) to the surface forcing fields and to the horizontal resolution is analyzed. During runs covering the period 1992-2002, two different sets of surface forcing boundary conditions are used, obtained 1) from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis project and 2) from the Estimating the Circulation and Climate of the Ocean (ECCO) assimilation consortium. The "ECCO forcing" is the "NCEP forcing" adjusted by a state estimation procedure using the MITgcm with a 1 degrees x 1 degrees global grid and the adjoint method assimilating a multivariate global ocean dataset. The skill of the model is evaluated against ocean observations available in situ and from satellites. The model domain is limited to the tropical Pacific, with open boundaries located along 26 degrees S, 26 degrees N, and in the Indonesian throughflow. To account for large-scale changes of the ocean circulation, the model is nested in the global time-varying ocean state provided by the ECCO consortium on a 1 grid. Increasing the spatial resolution to 1/3 degrees and using the ECCO forcing fields significantly improves many aspects of the circulation but produces overly strong currents in the western model domain. Increasing the resolution to 1/6 degrees does not yield further improvements of model results. Using the ECCO heat and freshwater fluxes in place of NCEP products leads to improved time-mean model skill (i.e., reduced biases) over most of the model domain, underlining the important role of adjusted heat and freshwater fluxes for improving model representations of the tropical Pacific. Combinations of ECCO and NCEP wind forcing fields can improve certain aspects of the model solutions, but neither ECCO nor NCEP winds show clear overall superiority.

Raghukumar, K, Cornuelle BD, Hodgkiss WS, Kuperman WA.  2008.  Pressure sensitivity kernels applied to time-reversal acoustics. Journal of the Acoustical Society of America. 124:98-112.   10.1121/1.2924130   AbstractWebsite

Sensitivity kernels for receptions of broadband sound transmissions are used to study the effect of the transmitted signal on the sensitivity of the reception to environmental perturbations. A first-order Born approximation is used to obtain the pressure sensitivity of the received signal to small changes in medium sound speed. The pressure perturbation to the received signal caused by medium sound speed changes is expressed as a linear combination of single-frequency sensitivity kernels weighted by the signal in the frequency domain. This formulation can be used to predict the response of a source transmission to sound speed perturbations. The stability of time-reversal is studied and compared to that of a one-way transmission using sensitivity kernels. In the absence of multipath, a reduction in pressure sensitivity using time reversal is only obtained with multiple sources. This can be attributed both to the presence of independent paths and to cancellations that occur due to the overlap of sensitivity kernels for different source-receiver paths. The sensitivity kernel is then optimized to give a new source transmission scheme that takes into account knowledge of the medium statistics and is related to the regularized inverse filter. (c) 2008 Acoustical Society of America.

Haidvogel, DB, Arango H, Budgell WP, Cornuelle BD, Curchitser E, Di Lorenzo E, Fennel K, Geyer WR, Hermann AJ, Lanerolle L, Levin J, McWilliams JC, Miller AJ, Moore AM, Powell TM, Shchepetkin AF, Sherwood CR, Signell RP, Warner JC, Wilkin J.  2008.  Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the Regional Ocean Modeling System. Journal of Computational Physics. 227:3595-3624.   10.1016/j.jcp.2007.06.016   AbstractWebsite

Systematic improvements in algorithmic design of regional ocean circulation models have led to significant enhancement in simulation ability across a wide range of space/time scales and marine system types. As an example, we briefly review the Regional Ocean Modeling System, a member of a general class of three-dimensional, free-surface, terrain-following numerical models. Noteworthy characteristics of the ROMS computational kernel include: consistent temporal averaging of the barotropic mode to guarantee both exact conservation and constancy preservation properties for tracers; redefined barotropic pressure-gradient terms to account for local variations in the density field; vertical interpolation performed using conservative parabolic splines; and higher-order, quasi-monotone advection algorithms. Examples of quantitative skill assessment are shown for a tidally driven estuary, an ice-covered high-latitude sea, a wind- and buoyancy-forced continental shelf, and a mid-latitude ocean basin. The combination of moderate-order spatial approximations, enhanced conservation properties, and quasi-monotone advection produces both more robust and accurate, and less diffusive, solutions than those produced in earlier terrain-following ocean models. Together with advanced methods of data assimilation and novel observing system technologies, these capabilities constitute the necessary ingredients for multi-purpose regional ocean prediction systems. (c) 2007 Elsevier Inc. All rights reserved.

Kim, SY, Terrill EJ, Cornuelle BD.  2008.  Mapping surface currents from HF radar radial velocity measurements using optimal interpolation. Journal of Geophysical Research-Oceans. 113   10.1029/2007jc004244   AbstractWebsite

An optimal interpolation (OI) method to compute surface vector current fields from radial velocity measurements derived from high-frequency (HF) radars is presented. The method assumes a smooth spatial covariance relationship between neighboring vector currents, in contrast to the more commonly used un-weighted least-squares fitting (UWLS) method, which assumes a constant vector velocity within a defined search radius. This OI method can directly compute any quantities linearly related to the radial velocities, such as vector currents and dynamic quantities (divergence and vorticity) as well as the uncertainties of those respective fields. The OI method is found to be more stable than the UWLS method and reduces spurious vector solutions near the baselines between HF radar installations. The OI method produces a covariance of the uncertainty of the estimated vector current fields. Three nondimensional uncertainty indices are introduced to characterize the uncertainty of the vector current at a point, representing an ellipse with directional characteristics. The vector current estimation using the OI method eliminates the need for multiple mapping steps and optimally fills intermittent coverage gaps. The effects of angular interpolation of radial velocities, a commonly used step in the preprocessing of radial velocity data prior to vector current computation in the UWLS method, are presented.

Muccino, JC, Arango HG, Bennett AF, Chua BS, Cornuelle BD, Di Lorenzo E, Egbert GD, Haidvogel D, Levin JC, Luo H, Miller AJ, Moore AA, Zaron ED.  2008.  The Inverse Ocean Modeling system. Part II: Applications. Journal of Atmospheric and Oceanic Technology. 25:1623-1637.   10.1175/2008jtecho522.1   AbstractWebsite

The Inverse Ocean Modeling (IOM) System is a modular system for constructing and running weak-constraint four-dimensional variational data assimilation (W4DVAR) for any linear or nonlinear functionally, smooth dynamical model and observing array. The IOM has been applied to four ocean models with widely varying characteristics. The Primitive Equations Z-coordinate-Harmonic Analysis of Tides (PEZ-HAT) and the Regional Ocean Modeling System (ROMS) are three-dimensional, primitive equations models while the Advanced Circulation model in 2D (ADCIRC-2D) and Spectral Element Ocean Model in 2D (SEOM-2D) are shallow-water models belonging to the general finite-element family. These models. in conjunction with the IOM, have been used to investigate a wide variety of scientific phenomena including tidal. mesoscale, and wind-driven circulation. In all cases, the assimilation of data using the IOM provides a better estimate of the ocean state than the model alone.

2009
Rasmussen, LL, Cornuelle BD, Levin LA, Largier JL, Di Lorenzo E.  2009.  Effects of small-scale features and local wind forcing on tracer dispersion and estimates of population connectivity in a regional scale circulation model. Journal of Geophysical Research-Oceans. 114   10.1029/2008jc004777   AbstractWebsite

A small-scale model of the Southern California-Northern Baja California coastline has been developed to explore dispersion over the continental shelf, with specific attention to physical parameters pertinent to simulations of larval dispersal and population connectivity. The ROMS simulation employs a nested grid system, with an inner domain resolution of 600 m and an outer domain resolution of 1.5 km. Realistic bathymetry and forcing were employed to investigate the effects of passive transport of tracers introduced at locations with known communities of mytilid mussels along the coastline. The effects of topographic resolution, boundary conditions, and choice of meteorological forcing products on dispersion rates, tracer trajectories, and the subsequent measures of population connectivity were examined. In particular, the choice of wind forcing product resulted in different circulation patterns and tracer trajectories and had especially important consequences on measures of larval connectivity such as self-seeding, potential for larval settlement ( import), and contribution to the pool of available larvae ( export). While some forcing products performed better when model data were compared to field measurements, no product was clearly superior. The uncertainty in results, which may appear minor in larger-scale temperature or surface velocity fields, is significant when examining a sensitive passive tracer. This modeling uncertainty needs to be addressed when interpreting connectivity results.

Dushaw, BD, Worcester PF, Munk WH, Spindel RC, Mercer JA, Howe BM, Metzger K, Birdsall TG, Andrew RK, Dzieciuch MA, Cornuelle BD, Menemenlis D.  2009.  A decade of acoustic thermometry in the North Pacific Ocean. Journal of Geophysical Research-Oceans. 114   10.1029/2008jc005124   AbstractWebsite

Over the decade 1996-2006, acoustic sources located off central California (1996 1999) and north of Kauai (1997-1999, 2002-2006) transmitted to receivers distributed throughout the northeast and north central Pacific. The acoustic travel times are inherently spatially integrating, which suppresses mesoscale variability and provides a precise measure of ray-averaged temperature. Daily average travel times at 4-day intervals provide excellent temporal resolution of the large-scale thermal field. The interannual, seasonal, and shorter-period variability is large, with substantial changes sometimes occurring in only a few weeks. Linear trends estimated over the decade are small compared to the interannual variability and inconsistent from path to path, with some acoustic paths warming slightly and others cooling slightly. The measured travel times are compared with travel times derived from four independent estimates of the North Pacific: (1) climatology, as represented by the World Ocean Atlas 2005 (WOA05); (2) objective analysis of the upper-ocean temperature field derived from satellite altimetry and in situ profiles; (3) an analysis provided by the Estimating the Circulation and Climate of the Ocean project, as implemented at the Jet Propulsion Laboratory (JPL-ECCO); and (4) simulation results from a high-resolution configuration of the Parallel Ocean Program (POP) model. The acoustic data show that WOA05 is a better estimate of the time mean hydrography than either the JPL-ECCO or the POP estimates, both of which proved incapable of reproducing the observed acoustic arrival patterns. The comparisons of time series provide a stringent test of the large-scale temperature variability in the models. The differences are sometimes substantial, indicating that acoustic thermometry data can provide significant additional constraints for numerical ocean models.

Kim, SY, Cornuelle BD, Terrill EJ.  2009.  Anisotropic Response of Surface Currents to the Wind in a Coastal Region. Journal of Physical Oceanography. 39:1512-1533.   10.1175/2009JPO4013.1   Abstract

Analysis of coastal surface currents measured off the coast of San Diego for two years suggests an anisotropic and asymmetric response to the wind, probably as a result of bottom/coastline boundary effects, including pressure gradients. In a linear regression, the statistically estimated anisotropic response explains approximately 20% more surface current variance than an isotropic wind-ocean response model. After steady wind forcing for three days, the isotropic surface current response veers 42 degrees +/- 2 degrees to the right of the wind regardless of wind direction, whereas the anisotropic analysis suggests that the upcoast (onshore) wind stress generates surface currents with 10 degrees +/- 4 degrees (71 degrees +/- 3 degrees) to the right of the wind direction. The anisotropic response thus reflects the dominance of alongshore currents in this coastal region. Both analyses yield wind-driven currents with 3%-5% of the wind speed, as expected. In addition, nonlinear isotropic and anisotropic response functions are considered, and the asymmetric current responses to the wind are examined. These results provide a comprehensive statistical model of the wind-driven currents in the coastal region, which has not been well identified in previous field studies, but is qualitatively consistent with descriptions of the current response in coastal ocean models.

Moore, AM, Arango HG, Di Lorenzo E, Miller AJ, Cornuelle BD.  2009.  An Adjoint Sensitivity Analysis of the Southern California Current Circulation and Ecosystem. Journal of Physical Oceanography. 39:702-720.   10.1175/2008jpo3740.1   AbstractWebsite

Adjoint methods of sensitivity analysis were applied to the California Current using the Regional Ocean Modeling Systems (ROMS) with medium resolution, aimed at diagnosing the circulation sensitivity to variations in surface forcing. The sensitivities of coastal variations in SST, eddy kinetic energy, and baroclinic instability of complex time-evolving flows were quantified. Each aspect of the circulation exhibits significant interannual and seasonal variations in sensitivity controlled by mesoscale circulation features. Central California SST is equally sensitive to wind stress and surface heat flux, but less so to wind stress curl, displaying the greatest sensitivity when upwelling-favorable winds are relaxing and the least sensitivity during the peak of upwelling. SST sensitivity is typically 2-4 times larger during summer than during spring, although larger variations occur during some years. The sensitivity of central coast eddy kinetic energy to surface forcing is constant on average throughout the year. Perturbations in the wind that align with mesoscale eddies to enhance the strength of the circulation by local Ekman pumping yield the greatest sensitivities. The sensitivity of the potential for baroclinic instability is greatest when nearshore horizontal temperature gradients are largest, and it is associated with variations in wind stress concentrated along the core of the California Current. The sensitivity varies by a factor of similar to 1.5 throughout the year. A new and important aspect of this work is identification of the complex flow dependence and seasonal dependence of the sensitivity of the ROMS California Current System (CCS) circulation to variations in surface forcing that was hitherto not previously appreciated.

Skarsoulis, EK, Cornuelle BD, Dzieciuch MA.  2009.  Travel-time sensitivity kernels in long-range propagation. Journal of the Acoustical Society of America. 126:2223-2233.   10.1121/1.3224835   AbstractWebsite

Wave-theoretic travel-time sensitivity kernels (TSKs) are calculated in two-dimensional (2D) and three-dimensional (3D) environments and their behavior with increasing propagation range is studied and compared to that of ray-theoretic TSKs and corresponding Fresnel-volumes. The differences between the 2D and 3D TSKs average out when horizontal or cross-range marginals are considered, which indicates that they are not important in the case of range-independent sound-speed perturbations or perturbations of large scale compared to the lateral TSK extent. With increasing range, the wave-theoretic TSKs expand in the horizontal cross-range direction, their cross-range extent being comparable to that of the corresponding free-space Fresnel zone, whereas they remain bounded in the vertical. Vertical travel-time sensitivity kernels (VTSKs)-one-dimensional kernels describing the effect of horizontally uniform sound-speed changes on travel-times-are calculated analytically using a perturbation approach, and also numerically, as horizontal marginals of the corresponding TSKs. Good agreement between analytical and numerical VTSKs, as well as between 2D and 3D VTSKs, is found. As an alternative method to obtain wave-theoretic sensitivity kernels, the parabolic approximation is used; the resulting TSKs and VTSKs are in good agreement with normal-mode results. With increasing range, the wave-theoretic VTSKs approach the corresponding ray-theoretic sensitivity kernels. (C) 2009 Acoustical Society of America. [DOI: 10.1121/1.3224835]

Hoteit, I, Cornuelle B, Kim SY, Forget G, Kohl A, Terrill E.  2009.  Assessing 4D-VAR for dynamical mapping of coastal high-frequency radar in San Diego. Dynamics of Atmospheres and Oceans. 48:175-197.   10.1016/j.dynatmoce.2008.11.005   AbstractWebsite

The problem of dynamically mapping high-frequency (HF) radar radial velocity observations is investigated using a three-dimensional hydrodynamic model of the San Diego coastal region and an adjoint-based assimilation method. The HF radar provides near-real-time radial velocities from three sites covering the region offshore of San Diego Bay. The hydrodynamical model is the Massachusetts Institute of Technology general circulation model (MITgcm) with 1 km horizontal resolution and 40 vertical layers. The domain is centered on Point Loma, extending 117 km offshore and 120 km alongshore. The reference run (before adjustment) is initialized from a single profile of T and S and is forced with wind data from a single shore station and with zero heat and fresh water fluxes. The adjoint of the model is used to adjust initial temperature, salinity, and velocity, hourly temperature, salinity and horizontal velocities at the open boundaries, and hourly surface fluxes of momentum, heat and freshwater so that the model reproduces hourly HF radar radial velocity observations. Results from a small number of experiments suggest that the adjoint method can be successfully used over 10-day windows at coastal model resolution. It produces a dynamically consistent model run that fits HF radar data with errors near the specified uncertainties. In a test of the forecasting capability of the San Diego model after adjustment, the forecast skill was shown to exceed persistence for up to 20 h. (C) 2008 Elsevier B.V. All rights reserved.

Kim, SY, Terrill EJ, Cornuelle BD.  2009.  Assessing Coastal Plumes in a Region of Multiple Discharges: The US-Mexico Border. Environmental Science & Technology. 43:7450-7457.   10.1021/es900775p   AbstractWebsite

The San Diego/Tijuana border region has several environmental challenges with regard to assessing water quality impacts resulting from local coastal ocean discharges for which transport is not hindered by political boundaries. While an understanding of the fate and transport of these discharged plumes has a broad audience, the spatial and temporal scales of the physical processes present numerous challenges in conducting assessment with any fidelity. To address these needs, a data-driven model of the transport of both shoreline and offshore discharges is developed and operated in a hindcast mode for a four-year period to analyze regional connectivity between the discharges and the receiving of waters and the coastline. The plume exposure hindcast model is driven by surface current data generated by a network of high-frequency radars. Observations provided by both boat-based CTD measurements and fixed oceanographic moorings are used with the Roberts-Snyder-Baumgartner model to predict the plume rise height. The surface transport model outputs are compared with shoreline samples of fecal indicator bacteria (FIB), and the skill of the model to assess low water quality is evaluated using receiver operating characteristic (ROC) analysis.

2010
Kim, SY, Cornuelle BD, Terrill EJ.  2010.  Decomposing observations of high-frequency radar-derived surface currents by their forcing mechanisms: Decomposition techniques and spatial structures of decomposed surface currents. Journal of Geophysical Research-Oceans. 115   10.1029/2010jc006222   AbstractWebsite

Surface current observations from a high-frequency radar network deployed in southern San Diego are decomposed according to their driving forces: pure tides and their neighboring off-band energy, local winds, and low frequency. Several superposed ocean responses are present as a result of the complicated bottom topography and relatively weak winds off southern San Diego, as opposed to coastal regions where circulation can be explained by a dominant forcing mechanism. This necessitates an application of a statistical decomposition approach. Surface currents coherent with pure tides are calculated using harmonic analysis. Locally wind-driven surface currents are estimated by regression of observed winds on observed surface currents. The dewinded and detided surface currents are filtered by weighted least-squares fitting assuming white noise and three colored signal bands: low-frequency band (less than 0.4 cycles per day) and near-tidal peaks at the diurnal (K-1) and semidiurnal (M-2) frequencies. The spatial and temporal variability of each part of the decomposed surface currents is investigated in terms of ocean response to the driving forces. In addition, the spatial correlations of individual components exhibit Gaussian and exponential shapes with varying decorrelation length scales.

Kim, SY, Cornuelle BD, Terrill EJ.  2010.  Decomposing observations of high-frequency radar-derived surface currents by their forcing mechanisms: Locally wind-driven surface currents. Journal of Geophysical Research-Oceans. 115   10.1029/2010jc006223   AbstractWebsite

The wind impulse response function and transfer function for high-frequency radar-derived surface currents off southern San Diego are calculated using several local wind observations. The spatial map of the transfer function reflects the influence of the coast on wind-current dynamics. Near the coast (within 20 km from the shoreline), the amplitudes of the transfer function at inertial and diurnal frequencies are reduced due to effects of coastline and bottom bathymetry. Meanwhile, the amplitude of low-frequency currents increases near the coast, which is attributed to the local geostrophic balance between cross-shore pressure gradients against the coast and currents. Locally wind-driven surface currents are estimated from the data-derived response function, and their power spectrum shows a strong diurnal peak superposed on a red spectrum, similar to the spectra of observed winds. Current magnitudes and veering angles to a quasi-steady wind are typically 2-5% of the wind speed and vary 50 degrees-90 degrees to the right of the wind, respectively. A wind skill map is introduced to present the fractional variance of surface currents explained by local winds as a verification tool for wind data quality and relevance. Moreover, the transfer functions in summer and winter are presented to examine the seasonal variation in ocean surface current response to the wind associated with stratification change.

Song, H, Hoteit I, Cornuelle BD, Subramanian AC.  2010.  An Adaptive Approach to Mitigate Background Covariance Limitations in the Ensemble Kalman Filter. Monthly Weather Review. 138:2825-2845.   10.1175/2010mwr2871.1   AbstractWebsite

A new approach is proposed to address the background covariance limitations arising from undersampled ensembles and unaccounted model errors in the ensemble Kalman filter (EnKF). The method enhances the representativeness of the EnKF ensemble by augmenting it with new members chosen adaptively to add missing information that prevents the EnKF fromfully fitting the data to the ensemble. The vectors to be added are obtained by back projecting the residuals of the observation misfits from the EnKF analysis step onto the state space. The back projection is done using an optimal interpolation (OI) scheme based on an estimated covariance of the subspace missing from the ensemble. In the experiments reported here, the OI uses a stationary background covariance matrix, as in the hybrid EnKF-three-dimensional variational data assimilation (3DVAR) approach, but the resulting correction is included as a new ensemble member instead of being added to all existing ensemble members. The adaptive approach is tested with the Lorenz-96 model. The hybrid EnKF-3DVAR is used as a benchmark to evaluate the performance of the adaptive approach. Assimilation experiments suggest that the new adaptive scheme significantly improves the EnKF behavior when it suffers from small size ensembles and neglected model errors. It was further found to be competitive with the hybrid EnKF-3DVAR approach, depending on ensemble size and data coverage.

Hoteit, I, Cornuelle B, Heimbach P.  2010.  An eddy-permitting, dynamically consistent adjoint-based assimilation system for the tropical Pacific: Hindcast experiments in 2000. Journal of Geophysical Research-Oceans. 115   10.1029/2009jc005437   AbstractWebsite

An eddy-permitting adjoint-based assimilation system has been implemented to estimate the state of the tropical Pacific Ocean. The system uses the Massachusetts Institute of Technology's general circulation model and its adjoint. The adjoint method is used to adjust the model to observations by controlling the initial temperature and salinity; temperature, salinity, and horizontal velocities at the open boundaries; and surface fluxes of momentum, heat, and freshwater. The model is constrained with most of the available data sets in the tropical Pacific, including Tropical Atmosphere and Ocean, ARGO, expendable bathythermograph, and satellite SST and sea surface height data, and climatologies. Results of hindcast experiments in 2000 suggest that the iterated adjoint-based descent is able to significantly improve the model consistency with the multivariate data sets, providing a dynamically consistent realization of the tropical Pacific circulation that generally matches the observations to within specified errors. The estimated model state is evaluated both by comparisons with observations and by checking the controls, the momentum balances, and the representation of small-scale features that were not well sampled by the observations used in the assimilation. As part of these checks, the estimated controls are smoothed and applied in independent model runs to check that small changes in the controls do not greatly change the model hindcast. This is a simple ensemble-based uncertainty analysis. In addition, the original and smoothed controls are applied to a version of the model with doubled horizontal resolution resulting in a broadly similar "downscaled'' hindcast, showing that the adjustments are not tuned to a single configuration (meaning resolution, topography, and parameter settings). The time-evolving model state and the adjusted controls should be useful for analysis or to supply the forcing, initial, and boundary conditions for runs of other models.

Raghukumar, K, Cornuelle BD, Hodgkiss WS, Kuperman WA.  2010.  Experimental demonstration of the utility of pressure sensitivity kernels in time-reversal. Journal of the Acoustical Society of America. 128:989-1003.   10.1121/1.3466858   AbstractWebsite

Pressure sensitivity kernels were recently applied to time-reversal acoustics in an attempt to explain the enhanced stability of the time-reversal focal spot [Raghukumar et al., J. Acoust. Soc. Am. 124, 98-112 (2008)]. The theoretical framework developed was also used to derive optimized source functions, closely related to the inverse filter. The use of these optimized source functions results in an inverse filter-like focal spot which is more robust to medium sound speed fluctuations than both time-reversal and the inverse filter. In this paper the theory is applied to experimental data gathered during the Focused Acoustic Fields experiment, conducted in 2005, north of Elba Island in Italy. Sensitivity kernels are calculated using a range-independent sound-speed profile, for a geometry identical to that used in the experiment, and path sensitivities are identified with observed arrivals. The validity of the kernels in tracking time-evolving Green's functions is studied, along with limitations that result from a linearized analysis. An internal wave model is used to generate an ensemble of sound speed profiles, which are then used along with the calculated sensitivity kernels to derive optimized source functions. Focal spots obtained using the observed Green's functions with these optimized source functions are then compared to those obtained using time-reversal and the inverse-filter. It is shown that these functions are able to provide a focal spot superior to time-reversal while being more robust to sound speed fluctuations than the inverse filter or time-reversal. (C) 2010 Acoustical Society of America. [DOI: 10.1121/1.3466858]

2011
Zhang, XB, Cornuelle B, Roemmich D.  2011.  Adjoint Sensitivity of the Nino-3 Surface Temperature to Wind Forcing. Journal of Climate. 24:4480-4493.   10.1175/2011jcli3917.1   AbstractWebsite

The evolution of sea surface temperature (SST) over the eastern equatorial Pacific plays a significant role in the intense tropical air-sea interaction there and is of central importance to the El Nino-Southern Oscillation (ENSO) phenomenon. Effects of atmospheric fields (especially wind stress) and ocean state on the eastern equatorial Pacific SST variations are investigated using the Massachusetts Institute of Technology general circulation model (MITgcm) and its adjoint model, which can calculate the sensitivities of a cost function (in this case the averaged 0-30-m temperature in the Nino-3 region during an ENSO event peak) to previous atmospheric forcing fields and ocean state going backward in time. The sensitivity of the Nino-3 surface temperature to monthly zonal wind stress in preceding months can be understood by invoking mixed layer heat balance, ocean dynamics, and especially linear equatorial wave dynamics. The maximum positive sensitivity of the Nino-3 surface temperature to local wind forcing usually happens similar to 1-2 months before the peak of the ENSO event and is hypothesized to be associated with the Ekman pumping mechanism. In model experiments, its magnitude is closely related to the subsurface vertical temperature gradient, exhibiting strong event-to-event differences with strong (weak) positive sensitivity during La Nina (strong El Nino) events. The adjoint sensitivity to remote wind forcing in the central and western equatorial Pacific is consistent with the standard hypothesis that the remote wind forcing affects the Nino-3 surface temperature indirectly by exciting equatorial Kelvin and Rossby waves and modulating thermocline depth in the Nino-3 region. The current adjoint sensitivity study is consistent with a previous regression-based sensitivity study derived from perturbation experiments. Finally, implication for ENSO monitoring and prediction is also discussed.

Gawarkiewicz, G, Jan S, Lermusiaux PFJ, McClean JL, Centurioni L, Taylor K, Cornuelle B, Duda TF, Wang J, Yang YJ, Sanford T, Lien RC, Lee C, Lee MA, Leslie W, Haley PJ, Niiler PP, Gopalakrishnan G, Velez-Belchi P, Lee DK, Kim YY.  2011.  Circulation and Intrusions Northeast of Taiwan: Chasing and Predicting Uncertainty in the Cold Dome. Oceanography. 24:110-121. AbstractWebsite

An important element of present oceanographic research is the assessment and quantification of uncertainty. These studies are challenging in the coastal ocean due to the wide variety of physical processes occurring on a broad range of spatial and temporal scales. In order to assess new methods for quantifying and predicting uncertainty, a joint Taiwan-US field program was undertaken in August/September 2009 to compare model forecasts of uncertainties in ocean circulation and acoustic propagation, with high-resolution in situ observations. The geographical setting was the continental shelf and slope northeast of Taiwan, where a feature called the "cold dome" frequently forms. Even though it is hypothesized that Kuroshio subsurface intrusions are the water sources for the cold dome, the dome's dynamics are highly uncertain, involving multiple scales and many interacting ocean features. During the experiment, a combination of near-surface and profiling drifters, broad-scale and high-resolution hydrography, mooring arrays, remote sensing, and regional ocean model forecasts of fields and uncertainties were used to assess mean fields and uncertainties in the region. River runoff from Typhoon Morakot, which hit Taiwan August 7-8, 2009, strongly affected shelf stratification. In addition to the river runoff, a cold cyclonic eddy advected into the region north of the Kuroshio, resulting in a cold dome formation event. Uncertainty forecasts were successfully employed to guide the hydrographic sampling plans. Measurements and forecasts also shed light on the evolution of cold dome waters, including the frequency of eddy shedding to the north-northeast, and interactions with the Kuroshio and tides. For the first time in such a complex region, comparisons between uncertainty forecasts and the model skill at measurement locations validated uncertainty forecasts. To complement the real-time model simulations, historical simulations with another model show that large Kuroshio intrusions were associated with low sea surface height anomalies east of Taiwan, suggesting that there may be some degree of predictability for Kuroshio intrusions.

Todd, RE, Rudnick DL, Mazloff MR, Davis RE, Cornuelle BD.  2011.  Poleward flows in the southern California Current System: Glider observations and numerical simulation. Journal of Geophysical Research-Oceans. 116   10.1029/2010jc006536   AbstractWebsite

Three years of continuous Spray glider observations in the southern California Current System (CCS) are combined with a numerical simulation to describe the mean and variability of poleward flows in the southern CCS. Gliders provide upper ocean observations with good across-shore and temporal resolution along two across-shore survey lines while the numerical simulation provides a dynamically consistent estimate of the ocean state. Persistent poleward flows are observed in three areas: within 100 km of the coast at Point Conception, within the Southern California Bight (SCB), and offshore of the SCB and the Santa Rosa Ridge (SRR). Poleward transport by the flows within the SCB and offshore of the SRR exceeds the poleward transport off Point Conception, suggesting that the poleward flows are not continuous over the 225 km between observation lines. The numerical simulation shows offshore transport between the survey lines that is consistent with some of the poleward flow turning offshore before reaching Point Conception. The poleward current offshore of the SRR is unique in that it is strongest at depths greater than 350 m and it is observed to migrate westward away from the coast. This westward propagation is tied to westward propagating density anomalies originating in the SCB during the spring-summer upwelling season when wind stress curl is most strongly positive. The across-shore wave number, frequency, and phase speed of the westward propagation and the lack of across-shore transport of salinity along isopycnals are consistent with first-mode baroclinic Rossby dynamics.

Skarsoulis, EK, Cornuelle BD, Dzieciuch MA.  2011.  Second-Order Sensitivity of Acoustic Travel Times to Sound Speed Perturbations. Acta Acustica United with Acustica. 97:533-543.   10.3813/aaa.918434   AbstractWebsite

The second-order sensitivity of finite-frequency acoustic travel times to sound speed perturbations in range-independent environments is studied. Using the notion of peak arrivals and the normal-mode representation of the Green's function first- and second-order perturbation expressions are derived for the travel times in terms of the underlying perturbations in the Green's function and finally in the sound speed profile. The resulting theoretical expressions are numerically validated. Assuming small and local perturbations the non-linear effects appear to be strongest for sound speed perturbations taking place close to the lower turning depths of the corresponding eigenrays. At the upper turning depths - in the case of temperate propagation conditions - the effects are much weaker due to the larger sound speed gradients. The magnitude of the second-order sensitivity of travel times relative to the first-order sensitivity can be used to obtain an estimate for the limits of linearity.

Kim, SY, Terrill EJ, Cornuelle BD, Jones B, Washburn L, Moline MA, Paduan JD, Garfield N, Largier JL, Crawford G, Kosro PM.  2011.  Mapping the U.S. West Coast surface circulation: A multiyear analysis of high-frequency radar observations. Journal of Geophysical Research-Oceans. 116   10.1029/2010jc006669   AbstractWebsite

The nearly completed U. S. West Coast (USWC) high-frequency radar (HFR) network provides an unprecedented capability to monitor and understand coastal ocean dynamics and phenomenology through hourly surface current measurements at up to 1 km resolution. The dynamics of the surface currents off the USWC are governed by tides, winds, Coriolis force, low-frequency pressure gradients (less than 0.4 cycles per day (cpd)), and nonlinear interactions of those forces. Alongshore surface currents show poleward propagating signals with phase speeds of O(10) and O(100 to 300) km day(-1) and time scales of 2 to 3 weeks. The signals with slow phase speed are only observed in southern California. It is hypothesized that they are scattered and reflected by shoreline curvature and bathymetry change and do not penetrate north of Point Conception. The seasonal transition of alongshore surface circulation forced by upwelling-favorable winds and their relaxation is captured in fine detail. Submesoscale eddies, identified using flow geometry, have Rossby numbers of 0.1 to 3, diameters in the range of 10 to 60 km, and persistence for 2 to 12 days. The HFR surface currents resolve coastal surface ocean variability continuously across scales from submesoscale to mesoscale (O(1) km to O(1000) km). Their spectra decay with k(-2) at high wave number (less than 100 km) in agreement with theoretical submesoscale spectra below the observational limits of present-day satellite altimeters.