Export 144 results:
Sort by: Author Title Type [ Year  (Desc)]
Orsi, AJ, Cornuelle BD, Severinghaus JP.  2014.  Magnitude and temporal evolution of Dansgaard-Oeschger event 8 abrupt temperature change inferred from nitrogen and argon isotopes in GISP2 ice using a new least-squares inversion. Earth and Planetary Science Letters. 395:81-90.   10.1016/j.epsl.2014.03.030   AbstractWebsite

Polar temperature is often inferred from water isotopes in ice cores. However, non-temperature effects on 3180 are important during the abrupt events of the last glacial period, such as changes in the seasonality of precipitation, the northward movement of the storm track, and the increase in accumulation. These effects complicate the interpretation of 8180 as a temperature proxy. Here, we present an independent surface temperature reconstruction, which allows us to test the relationship between delta O-18(ice) and temperature, during Dansgaard-Oeschger event 8, 38.2 thousand yrs ago using new delta N-15 and delta Ar-40 data from the GISP2 ice core in Greenland. This temperature reconstruction relies on a new inversion of inert gas isotope data using generalized least-squares, and includes a robust uncertainty estimation. We find that both temperature and delta O-18 increased in two steps of 20 and 140 yrs, with an overall amplitude of 11.80 +/- 1.8 degrees C between the stadial and interstadial centennial-mean temperature. The coefficient alpha = d delta O-18/dT changes with each time-segment, which shows that non-temperature sources of fractionation have a significant contribution to the delta O-18 signal. When measured on century-averaged values, we find that alpha = d delta O-18/dT = 0.32 +/- 0.06%(0)/degrees C, which is similar to the glacial/Holocene value of 0.328%(o)/degrees C. (C) 2014 Elsevier B.V. All rights reserved.

Verdy, A, Mazloff MR, Cornuelle BD, Kim SY.  2014.  Wind-driven sea level variability on the California coast: An adjoint sensitivity analysis. Journal of Physical Oceanography. 44:297-318.   10.1175/jpo-d-13-018.1   AbstractWebsite

Effects of atmospheric forcing on coastal sea surface height near Port San Luis, central California, are investigated using a regional state estimate and its adjoint. The physical pathways for the propagation of nonlocal [O(100 km)] wind stress effects are identified through adjoint sensitivity analyses, with a cost function that is localized in space so that the adjoint shows details of the propagation of sensitivities. Transfer functions between wind stress and SSH response are calculated and compared to previous work. It is found that (i) the response to local alongshore wind stress dominates on short time scales of O(1 day); (ii) the effect of nonlocal winds dominates on longer time scales and is carried by coastally trapped waves, as well as inertia-gravity waves for offshore wind stress; and (iii) there are significant seasonal variations in the sensitivity of SSH to wind stress due to changes in stratification. In a more stratified ocean, the damping of sensitivities to local and offshore winds is reduced, allowing for a larger and longer-lasting SSH response to wind stress.

Ponte, AL, Cornuelle BD.  2013.  Coastal numerical modelling of tides: Sensitivity to domain size and remotely generated internal tide. Ocean Modelling. 62:17-26.   10.1016/j.ocemod.2012.11.007   AbstractWebsite

The propagation of remotely generated superinertial internal tides constitutes a difficulty for the modelling of regional ocean tidal variability which we illustrate in several ways. First, the M2 tidal solution inside a control region located along the Southern California Bight coastline is monitored while the extent of the numerical domain is increased (up to 512 x 512 km). While the amplitude and phase of sea level averaged over the region is quasi-insensitive to domain size, a steady increase of kinetic energy, predominantly baroclinic, is observed with increasing domain size. The increasing flux of energy into the control region suggests that this trend is explained by the growing contribution from remote generation sites of internal tide which can propagate up to the control region. Increasing viscosities confirms this interpretation by lowering baroclinic energy levels and limiting their rate of increase with domain size. Doubling the grid spacing allows consideration of numerical domains 2 times larger. While the coarse grid has lower energy levels than the finer grid, the rate of energy increase with domain size appears to be slowing for the largest domain of the coarse grid simulations. Forcing the smallest domain with depth-varying tidal boundary conditions from the simulation in the largest domain produces energy levels inside the control region comparable to those in the control region for the largest domain, thereby confirming the feasibility of a nested approach. In contrast, simulations forced with a subinertial tidal constituent (K1) show that when the propagation of internal tide is limited, the control region kinetic energy is mostly barotropic and the magnitudes of variations of the kinetic energy with domain size are reduced. (C) 2012 Elsevier Ltd. All rights reserved.

Hoteit, I, Hoar T, Gopalakrishnan G, Collins N, Anderson J, Cornuelle B, Kohl A, Heimbach P.  2013.  A MITgcm/DART ensemble analysis and prediction system with application to the Gulf of Mexico. Dynamics of Atmospheres and Oceans. 63:1-23.   10.1016/j.dynatmoce.2013.03.002   AbstractWebsite

This paper describes the development of an advanced ensemble Kalman filter (EnKF)-based ocean data assimilation system for prediction of the evolution of the loop current in the Gulf of Mexico (GoM). The system integrates the Data Assimilation Research Testbed (DART) assimilation package with the Massachusetts Institute of Technology ocean general circulation model (MITgcm). The MITgcm/DART system supports the assimilation of a wide range of ocean observations and uses an ensemble approach to solve the nonlinear assimilation problems. The GoM prediction system was implemented with an eddy-resolving 1/10th degree configuration of the MITgcm. Assimilation experiments were performed over a 6-month period between May and October during a strong loop current event in 1999. The model was sequentially constrained with weekly satellite sea surface temperature and altimetry data. Experiments results suggest that the ensemble-based assimilation system shows a high predictive skill in the GoM, with estimated ensemble spread mainly concentrated around the front of the loop current. Further analysis of the system estimates demonstrates that the ensemble assimilation accurately reproduces the observed features without imposing any negative impact on the dynamical balance of the system. Results from sensitivity experiments with respect to the ensemble filter parameters are also presented and discussed. (C) 2013 Elsevier B.V. All rights reserved.

Giglio, D, Roemmich D, Cornuelle B.  2013.  Understanding the annual cycle in global steric height. Geophysical Research Letters. 40:4349-4354.   10.1002/grl.50774   AbstractWebsite

Steric variability in the ocean includes diabatic changes in the surface layer due to air-sea buoyancy fluxes and adiabatic changes due to advection, which are dominant in the subsurface ocean. Here the annual signal in subsurface steric height (eta' below 200 db) is computed on a global scale using temperature and salinity profiles from Argo floats. The zonal average of over a season (e.g., eta'(March) - eta'(December)) is compared to the wind-forced vertical advection contribution (Delta eta'(w)) both in the global ocean and in different basins. The results show agreement that extends beyond the tropics. The estimate of Delta eta'(w) is based on the Ekman pumping and assumes that the seasonal vertical velocity is constant over the depth range of interest. This assumption is consistent with annual isopycnal displacements inferred from Argo profiles. The contribution of horizontal advection to Delta eta' is significant in some regions and consistent with differences between Delta eta' and Delta eta'(w).

Gopalakrishnan, G, Cornuelle BD, Hoteit I.  2013.  Adjoint sensitivity studies of loop current and eddy shedding in the Gulf of Mexico. Journal of Geophysical Research: Oceans. 118:3315-3335.   10.1002/jgrc.20240   AbstractWebsite

Adjoint model sensitivity analyses were applied for the loop current (LC) and its eddy shedding in the Gulf of Mexico (GoM) using the MIT general circulation model (MITgcm). The circulation in the GoM is mainly driven by the energetic LC and subsequent LC eddy separation. In order to understand which ocean regions and features control the evolution of the LC, including anticyclonic warm-core eddy shedding in the GoM, forward and adjoint sensitivities with respect to previous model state and atmospheric forcing were computed using the MITgcm and its adjoint. Since the validity of the adjoint model sensitivities depends on the capability of the forward model to simulate the real LC system and the eddy shedding processes, a 5 year (2004–2008) forward model simulation was performed for the GoM using realistic atmospheric forcing, initial, and boundary conditions. This forward model simulation was compared to satellite measurements of sea-surface height (SSH) and sea-surface temperature (SST), and observed transport variability. Despite realistic mean state, standard deviations, and LC eddy shedding period, the simulated LC extension shows less variability and more regularity than the observations. However, the model is suitable for studying the LC system and can be utilized for examining the ocean influences leading to a simple, and hopefully generic LC eddy separation in the GoM. The adjoint sensitivities of the LC show influences from the Yucatan Channel (YC) flow and Loop Current Frontal Eddy (LCFE) on both LC extension and eddy separation, as suggested by earlier work. Some of the processes that control LC extension after eddy separation differ from those controlling eddy shedding, but include YC through-flow. The sensitivity remains stable for more than 30 days and moves generally upstream, entering the Caribbean Sea. The sensitivities of the LC for SST generally remain closer to the surface and move at speeds consistent with advection by the high-speed core of the current, while sensitivities to SSH generally extend to deeper layers and propagate more slowly. The adjoint sensitivity to relative vorticity deduced from the sensitivities to velocity fields suggests that advection of cyclonic (positive) relative vorticity anomalies from the YC or the LCFEs accelerate the LC eddy separation. Forward model perturbation experiments were performed to complement and check the adjoint sensitivity analysis as well as sampling the predictability and nonlinearity of the LC evolution. The model and its adjoint can be used in four-dimensional variational assimilation (4D-VAR) to produce dynamically consistent ocean state estimates for analysis and forecasts of the circulation of the GoM.

Gopalakrishnan, G, Cornuelle BD, Hoteit I, Rudnick DL, Owens BW.  2013.  State estimates and forecasts of the loop current in the Gulf of Mexico using the MITgcm and its adjoint. Journal of Geophysical Research: Oceans. 118:3292-3314.   10.1002/jgrc.20239   AbstractWebsite

An ocean state estimate has been developed for the Gulf of Mexico (GoM) using the MIT general circulation model and its adjoint. The estimate has been tested by forecasting loop current (LC) evolution and eddy shedding in the GoM. The adjoint (or four-dimensional variational) method was used to match the model evolution to observations by adjusting model temperature and salinity initial conditions, open boundary conditions, and atmospheric forcing fields. The model was fit to satellite-derived along-track sea surface height, separated into temporal mean and anomalies, and gridded sea surface temperature for 2 month periods. The optimized state at the end of the assimilation period was used to initialize the forecast for 2 months. Forecasts explore practical LC predictability and provide a cross-validation test of the state estimate by comparing it to independent future observations. The model forecast was tested for several LC eddy separation events, including Eddy Franklin in May 2010 during the deepwater horizon oil spill disaster in the GoM. The forecast used monthly climatological open boundary conditions, atmospheric forcing, and run-off fluxes. The model performance was evaluated by computing model-observation root-mean-square difference (rmsd) during both the hindcast and forecast periods. The rmsd metrics for the forecast generally outperformed persistence (keeping the initial state fixed) and reference (forecast initialized using assimilated Hybrid Coordinate Ocean Model 1/12° global analysis) model simulations during LC eddy separation events for a period of 1̃2 months.

Roux, P, Kuperman WA, Cornuelle BD, Aulanier F, Hodgkiss WS, Song HC.  2013.  Analyzing sound speed fluctuations in shallow water from group-velocity versus phase-velocity data representation. Journal of the Acoustical Society of America. 133:1945-1952.   10.1121/1.4792354   AbstractWebsite

Data collected over more than eight consecutive hours between two source-receiver arrays in a shallow water environment are analyzed through the physics of the waveguide invariant. In particular, the use of vertical arrays on both the source and receiver sides provides source and receiver angles in addition to travel-times associated with a set of eigenray paths in the waveguide. From the travel-times and the source-receiver angles, the eigenrays are projected into a group-velocity versus phase-velocity (Vg-Vp) plot for each acquisition. The time evolution of the Vg-Vp representation over the 8.5-h long experiment is discussed. Group speed fluctuations observed for a set of eigenrays with turning points at different depths in the water column are compared to the Brunt-Vaisala frequency. (C) 2013 Acoustical Society of America.

Subramanian, AC, Miller AJ, Cornuelle BD, Di Lorenzo E, Weller RA, Straneo F.  2013.  A data assimilative perspective of oceanic mesoscale eddy evolution during VOCALS-REx. Atmospheric Chemistry and Physics. 13:3329-3344.   10.5194/acp-13-3329-2013   AbstractWebsite

Oceanic observations collected during the VOCALS-REx cruise time period, 1-30 November 2008, are assimilated into a regional ocean model (ROMS) using 4DVAR and then analyzed for their dynamics. Nonlinearities in the system prevent a complete 30-day fit, so two 15-day fits for 1-15 November and 16-30 November are executed using the available observations of hydrographic temperature and salinity, along with satellite fields of SST and sea-level height anomaly. The fits converge and reduce the cost function significantly, and the results indicated that ROMS is able to successfully reproduce both large-scale and smaller-scale features of the flows observed during the VOCALS-REx cruise. Particular attention is focused on an intensively studied eddy at 76 degrees W, 19 degrees S. The ROMS fits capture this eddy as an isolated rotating 3-D vortex with a strong subsurface signature in velocity, temperature and anomalously low salinity. The eddy has an average temperature anomaly of approximately -0.5 degrees C over a depth range from 50-600 m and features a cold anomaly of approximately -1 degrees C near 150 m depth. The eddy moves northwestward and elongates during the second 15-day fit. It exhibits a strong signature in the Okubo-Weiss parameter, which indicates significant non-linearity in its evolution. The heat balance for the period of the cruise from the ocean state estimate reveals that the horizontal advection and the vertical mixing processes are the dominant terms that balance the temperature tendency of the upper layer of the ocean locally in time and space. Areal averages around the eddies, for a 15-day period during the cruise, suggest that vertical mixing processes generally balance the surface heating. Although, this indicates only a small role for lateral advective processes in this region during this period, this quasi-instantaneous heat budget analysis cannot be extended to interpret the seasonal or long-term upper ocean heat budget in this region.

Kim, SY, Cornuelle BD, Terrill EJ, Jones B, Washburn L, Moline MA, Paduan JD, Garfield N, Largier JL, Crawford G, Kosro PM.  2013.  Poleward propagating subinertial alongshore surface currents off the US West Coast. Journal of Geophysical Research-Oceans. 118:6791-6806.   10.1002/jgrc.20400   AbstractWebsite

The network comprising 61 high-frequency radar systems along the U.S. West Coast (USWC) provides a unique, high resolution, and broad scale view of ocean surface circulation. Subinertial alongshore surface currents show poleward propagating signals with phase speeds of O(10) and O(100-300) kmd-1 that are consistent with historical in situ observations off the USWC and that can be possibly interpreted as coastally trapped waves (CTWs). The propagating signals in the slow mode are partly observed in southern California, which may result from scattering and reflection of higher-mode CTWs due to curvature of shoreline and bathymetry near Point Conception, California. On the other hand, considering the order of the phase speed in the slow mode, the poleward propagating signals may be attributed to alongshore advection or pressure-driven flows. A statistical regression of coastal winds at National Data Buoy Center buoys on the observed surface currents partitions locally and remotely wind-forced components, isolates footprints of the equatorward propagating storm events in winter off the USWC, and shows the poleward propagating signals year round.

Skarsoulis, EK, Cornuelle BD, Dzieciuch MA.  2013.  Long-range asymptotic behavior of vertical travel-time sensitivity kernels. Journal of the Acoustical Society of America. 134:3201-3210.   10.1121/1.4818785   AbstractWebsite

Vertical travel-time sensitivity kernels (VTSKs) describe the effect of horizontally uniform sound-speed changes on travel times in range-independent ocean environments. Wave-theoretic VTSKs can be obtained either analytically, through perturbation of the normal-mode representation, or numerically, as horizontal marginals of the corresponding two-dimensional and three-dimensional travel-time sensitivity kernels. In previous works, it has been observed that wave-theoretic finite-frequency VTSKs approach the corresponding ray-theoretic sensitivity kernels as the propagation range increases. The present work is an attempt to explain this behavior. A stationary-phase approach is used to obtain a long-range asymptotic expression for the wave-theoretic VTSKs. The resulting asymptotic VTSKs are very close to the corresponding ray-theoretic ones. The smoothness condition, required for the stationary-phase approximation to hold, is used to obtain an estimate for the range beyond which the asymptotic behavior sets in. (C) 2013 Acoustical Society of America.

Colosi, JA, Van Uffelen LJ, Cornuelle BD, Dzieciuch MA, Worcester PF, Dushaw BD, Ramp SR.  2013.  Observations of sound-speed fluctuations in the western Philippine Sea in the spring of 2009. Journal of the Acoustical Society of America. 134:3185-3200.   10.1121/1.4818784   AbstractWebsite

As an aid to understanding long-range acoustic propagation in the Philippine Sea, statistical and phenomenological descriptions of sound-speed variations were developed. Two moorings of oceanographic sensors located in the western Philippine Sea in the spring of 2009 were used to track constant potential-density surfaces (isopycnals) and constant potential-temperature surfaces (isotherms) in the depth range 120-2000 m. The vertical displacements of these surfaces are used to estimate sound-speed fluctuations from internal waves, while temperature/salinity variability along isopycnals are used to estimate sound-speed fluctuations from intrusive structure often termed spice. Frequency spectra and vertical covariance functions are used to describe the space-time scales of the displacements and spiciness. Internal-wave contributions from diurnal and semi-diurnal internal tides and the diffuse internal-wave field [related to the Garrett-Munk (GM) spectrum] are found to dominate the sound-speed variability. Spice fluctuations are weak in comparison. The internal wave and spice frequency spectra have similar form in the upper ocean but are markedly different below 170-m depth. Diffuse internal-wave mode spectra show a form similar to the GM model, while internal-tide mode spectra scale as mode number to the minus two power. Spice decorrelates rapidly with depth, with a typical correlation scale of tens of meters.

Dzieciuch, MA, Cornuelle BD, Skarsoulis EK.  2013.  Structure and stability of wave-theoretic kernels in the ocean. Journal of the Acoustical Society of America. 134:3318-3331.   10.1121/1.4818846   AbstractWebsite

Wave-theoretic modeling can be applied to obtain travel-time sensitivity kernels (TSKs) representing the amount ray travel times are affected by sound-speed variations anywhere in the medium. This work explores the spatial frequency content of the TSK compared to expected ocean variability. It also examines the stability of the TSK in environments that produce strong sensitivity of ray paths to initial conditions. The conclusion is that the linear TSK model is an effective predictor of travel-time changes and that the rays perform nearly as well as the full-wave kernel. The TSK is examined in physical space and in wavenumber space, and it is found that this is the key to understanding how the travel time reacts to ocean perturbations. There are minimum vertical and horizontal length scales of ocean perturbations that are required for the travel time to be affected. The result is that the correspondence between true travel times and those calculated from the kernel is high for large-scale perturbations and somewhat less for the small scales. This demonstrates the validity of ray-based inversion of travel time observations for the cases under study. (C) 2013 Acoustical Society of America.

Powell, BS, Kerry CG, Cornuelle BD.  2013.  Using a numerical model to understand the connection between the ocean and acoustic travel-time measurements. Journal of the Acoustical Society of America. 134:3211-3222.   10.1121/1.4818786   AbstractWebsite

Measurements of acoustic ray travel-times in the ocean provide synoptic integrals of the ocean state between source and receiver. It is known that the ray travel-time is sensitive to variations in the ocean at the transmission time, but the sensitivity of the travel-time to spatial variations in the ocean prior to the acoustic transmission have not been quantified. This study examines the sensitivity of ray travel-time to the temporally and spatially evolving ocean state in the Philippine Sea using the adjoint of a numerical model. A one year series of five day backward integrations of the adjoint model quantify the sensitivity of travel-times to varying dynamics that can alter the travel-time of a 611 km ray by 200 ms. The early evolution of the sensitivities reveals high-mode internal waves that dissipate quickly, leaving the lowest three modes, providing a connection to variations in the internal tide generation prior to the sample time. They are also strongly sensitive to advective effects that alter density along the ray path. These sensitivities reveal how travel-time measurements are affected by both nearby and distant waters. Temporal nonlinearity of the sensitivities suggests that prior knowledge of the ocean state is necessary to exploit the travel-time observations. (C) 2013 Acoustical Society of America.

Song, HJ, Hoteit I, Cornuelle BD, Luo XD, Subramanian AC.  2013.  An adjoint-based adaptive ensemble Kalman filter. Monthly Weather Review. 141:3343-3359. AbstractWebsite

A new hybrid ensemble Kalman filter/four-dimensional variational data assimilation (EnKF/4D-VAR) approach is introduced to mitigate background covariance limitations in the EnKF. The work is based on the adaptive EnKF (AEnKF) method, which bears a strong resemblance to the hybrid EnKF/three-dimensional variational data assimilation (3D-VAR) method. In the AEnKF, the representativeness of the EnKF ensemble is regularly enhanced with new members generated after back projection of the EnKF analysis residuals to state space using a 3D-VAR [or optimal interpolation (OI)] scheme with a preselected background covariance matrix. The idea here is to reformulate the transformation of the residuals as a 4D-VAR problem, constraining the new member with model dynamics and the previous observations. This should provide more information for the estimation of the new member and reduce dependence of the AEnKF on the assumed stationary background covariance matrix. This is done by integrating the analysis residuals backward in time with the adjoint model. Numerical experiments are performed with the Lorenz-96 model under different scenarios to test the new approach and to evaluate its performance with respect to the EnKF and the hybrid EnKF/3D-VAR. The new method leads to the least root-mean-square estimation errors as long as the linear assumption guaranteeing the stability of the adjoint model holds. It is also found to be less sensitive to choices of the assimilation system inputs and parameters.

Gopalakrishnan, G, Cornuelle BD, Gawarkiewicz G, McClean JL.  2013.  Structure and evolution of the cold dome off northeastern Taiwan: A numerical study. Oceanography. 26:66-79. Abstract

Numerous observational and modeling studies of ocean circulation surrounding Taiwan have reported occurrences of cold water and doming of isotherms (called the cold dome) that result in the formation of coastal upwelling on the northeastern Taiwan shelf. We use a high-resolution (1/24°) ocean model based on the Massachusetts Institute of Technology general circulation model to study the evolution of this distinct shelf-slope circulation phenomenon. We performed a number of model simulations spanning a five-year period (2004–2008) using realistic atmospheric forcing and initial and open boundary conditions. The model solutions were compared with satellite measurements of sea surface height (SSH), sea surface temperature (SST), and historical temperature and salinity observations. The model showed a realistically shaped cold dome with a diameter of ~ 100 km and temperature of ~ 3°C below the ambient shelf waters at 50 m depth. The occurrences of simulated cold dome events appeared to be connected with the seasonal variability of the Kuroshio Current. The model simulations showed more upwelling events during spring and summer when the core of the Kuroshio tends to migrate away from the east coast of Taiwan, compared to fall and winter when the core of the Kuroshio is generally found closer to the east coast of Taiwan. The model also reproduced weak cyclonic circulation associated with the upwelling off northeastern Taiwan. We analyzed the spatio-temporal variability of the cold dome using the model solution as a proxy and designed a "cold dome index" based on the temperature at 50 m depth averaged over a 0.5° × 0.5° box centered at 25.5°N, 122°E. The cold dome index correlates with temperature at 50 m depth in a larger region, suggesting the spatial extent of the cold dome phenomenon. The index had correlation maxima of 0.78 and 0.40 for simulated SSH and SST, respectively, in and around the cold dome box region, and we hypothesize that it is a useful indicator of upwelling off northeastern Taiwan. In addition, both correlation and composite analysis between the temperature at 50 m depth and the East Taiwan Channel transport showed no cold dome events during low-transport events (often in winter) and more frequent cold dome events during high-transport events (often in summer). The simulated cold dome events had time scales of about two weeks, and their centers aligned roughly along a northeastward line starting from the northeastern tip of Taiwan.

Subramanian, AC, Hoteit I, Cornuelle B, Miller AJ, Song H.  2012.  Linear versus Nonlinear Filtering with Scale-Selective Corrections for Balanced Dynamics in a Simple Atmospheric Model. Journal of the Atmospheric Sciences. 69:3405-3419.   10.1175/JAS-D-11-0332.1   AbstractWebsite

This paper investigates the role of the linear analysis step of the ensemble Kalman filters (EnKF) in disrupting the balanced dynamics in a simple atmospheric model and compares it to a fully nonlinear particle-based filter (PF). The filters have a very similar forecast step but the analysis step of the PF solves the full Bayesian filtering problem while the EnKF analysis only applies to Gaussian distributions. The EnKF is compared to two flavors of the particle filter with different sampling strategies, the sequential importance resampling filter (SIRF) and the sequential kernel resampling filter (SKRF). The model admits a chaotic vortical mode coupled to a comparatively fast gravity wave mode. It can also be configured either to evolve on a so-called slow manifold, where the fast motion is suppressed, or such that the fast-varying variables are diagnosed from the slow-varying variables as slaved modes. Identical twin experiments show that EnKF and PF capture the variables on the slow manifold well as the dynamics is very stable. PFs, especially the SKRF, capture slaved modes better than the EnKF, implying that a full Bayesian analysis estimates the nonlinear model variables better. The PFs perform significantly better in the fully coupled nonlinear model where fast and slow variables modulate each other. This suggests that the analysis step in the PFs maintains the balance in both variables much better than the EnKF. It is also shown that increasing the ensemble size generally improves the performance of the PFs but has less impact on the EnKF after a sufficient number of members have been used.

Zhang, XB, Cornuelle B, Roemmich D.  2012.  Sensitivity of Western Boundary Transport at the Mean North Equatorial Current Bifurcation Latitude to Wind Forcing. Journal of Physical Oceanography. 42:2056-2072.   10.1175/jpo-d-11-0229.1   AbstractWebsite

The bifurcation of the North Equatorial Current (NEC) plays an important role in the heat and water mass exchanges between the tropical and subtropical gyres in the Pacific Ocean. The variability of western boundary transport (WBT) east of the Philippine coast at the mean NEC bifurcation latitude (12 degrees N) is examined here. A tropical Pacific regional model is set up based on the Massachusetts Institute of Technology general circulation model and its adjoint, which calculates the sensitivities of a defined meridional transport to atmospheric forcing fields and ocean state going backward in time. The adjoint-derived sensitivity of the WBT at the mean NEC bifurcation latitude to surface wind stress is dominated by curl-like patterns that are located farther eastward and southward with increasing time lag. The temporal evolution of the adjoint sensitivity of the WBT to wind stress resembles wind-forced Rossby wave dynamics but propagating with speeds determined by the background stratification and current, suggesting that wind-forced Rossby waves are the underlying mechanism. Interannual-to-decadal variations of the WBT can be hindcast well by multiplying the adjoint sensitivity and the time-lagged wind stress over the whole model domain and summing over time lags. The analysis agrees with previous findings that surface wind stress (especially zonal wind stress in the western subtropical Pacific) largely determines the WBT east of the Philippines, and with a time lag based on Rossby wave propagation. This adjoint sensitivity study quantifies the contribution of wind stress at all latitudes and longitudes and provides a novel perspective to understand the relationship between the WBT and wind forcing over the Pacific Ocean.

Orsi, AJ, Cornuelle BD, Severinghaus JP.  2012.  Little Ice Age cold interval in West Antarctica: Evidence from borehole temperature at the West Antarctic Ice Sheet (WAIS) Divide. Geophysical Research Letters. 39   10.1029/2012gl051260   AbstractWebsite

The largest climate anomaly of the last 1000 years in the Northern Hemisphere was the Little Ice Age (LIA) from 1400-1850 C. E., but little is known about the signature of this event in the Southern Hemisphere, especially in Antarctica. We present temperature data from a 300 m borehole at the West Antarctic Ice Sheet (WAIS) Divide. Results show that WAIS Divide was colder than the last 1000-year average from 1300 to 1800 C.E. The temperature in the time period 1400-1800 C.E. was on average 0.52 +/- 0.28 degrees C colder than the last 100-year average. This amplitude is about half of that seen at Greenland Summit (GRIP). This result is consistent with the idea that the LIA was a global event, probably caused by a change in solar and volcanic forcing, and was not simply a seesaw-type redistribution of heat between the hemispheres as would be predicted by some ocean-circulation hypotheses. The difference in the magnitude of the LIA between Greenland and West Antarctica suggests that the feedbacks amplifying the radiative forcing may not operate in the same way in both regions. Citation: Orsi, A. J., B. D. Cornuelle, and J. P. Severinghaus (2012), Little Ice Age cold interval in West Antarctica: Evidence from borehole temperature at the West Antarctic Ice Sheet (WAIS) Divide, Geophys. Res. Lett., 39, L09710, doi: 10.1029/2012GL051260.

Sarkar, J, Marandet C, Roux P, Walker S, Cornuelle BD, Kuperman WA.  2012.  Sensitivity kernel for surface scattering in a waveguide. Journal of the Acoustical Society of America. 131:111-118.   10.1121/1.3665999   AbstractWebsite

Using the Born approximation, a linearized sensitivity kernel is derived to describe the relationship between a local change at the free surface and its effect on the acoustic propagation in the water column. The structure of the surface scattering kernel is investigated numerically and experimentally for the case of a waveguide at the ultrasonic scale. To better demonstrate the sensitivity of the multipath propagation to the introduction of a localized perturbation at the air-water interface, the kernel is formulated both in terms of point-to-point and beam-to-beam representations. Agreement between theory and experiment suggests applications to sensitivity analysis of the wavefield for sea surface perturbations. (C) 2012 Acoustical Society of America. [DOI: 10.1121/1.3665999]

Colosi, JA, Duda TF, Lin YT, Lynch JF, Newhall AE, Cornuelle BD.  2012.  Observations of sound-speed fluctuations on the New Jersey continental shelf in the summer of 2006. Journal of the Acoustical Society of America. 131:1733-1748.   10.1121/1.3666014   AbstractWebsite

Environmental sensors moored on the New Jersey continental shelf tracked constant density surfaces (isopycnals) for 35 days in the summer of 2006. Sound-speed fluctuations from internal-wave vertical isopycnal displacements and from temperature/salinity variability along isopycnals (spiciness) are analyzed using frequency spectra and vertical covariance functions. Three varieties of internal waves are studied: Diffuse broadband internal waves (akin to waves fitting the deep water Garrett/Munk spectrum), internal tides, and, to a lesser extent, nonlinear internal waves. These internal-wave contributions are approximately distinct in the frequency domain. It is found that in the main thermocline spicy thermohaline structure dominates the root mean square sound-speed variability, with smaller contributions coming from (in order) nonlinear internal waves, diffuse internal waves, and internal tides. The frequency spectra of internal-wave displacements and of spiciness have similar form, likely due to the advection of variable-spiciness water masses by horizontal internal-wave currents, although there are technical limitations to the observations at high frequency. In the low-frequency, internal-wave band the internal-wave spectrum follows frequency to the -1.81 power, whereas the spice spectrum shows a -1.73 power. Mode spectra estimated via covariance methods show that the diffuse internal-wave spectrum has a smaller mode bandwidth than Garrett/Munk and that the internal tide has significant energy in modes one through three. (C) 2012 Acoustical Society of America. [DOI: 10.1121/1.3666014]

Todd, RE, Rudnick DL, Mazloff MR, Cornuelle BD, Davis RE.  2012.  Thermohaline structure in the California Current System: Observations and modeling of spice variance. Journal of Geophysical Research-Oceans. 117   10.1029/2011jc007589   AbstractWebsite

Upper ocean thermohaline structure in the California Current System is investigated using sustained observations from autonomous underwater gliders and a numerical state estimate. Both observations and the state estimate show layers distinguished by the temperature and salinity variability along isopycnals (i.e., spice variance). Mesoscale and submesoscale spice variance is largest in the remnant mixed layer, decreases to a minimum below the pycnocline near 26.3 kg m(-3), and then increases again near 26.6 kg m(-3). Layers of high (low) meso-and submesoscale spice variance are found on isopycnals where large-scale spice gradients are large (small), consistent with stirring of large-scale gradients to produce smaller scale thermohaline structure. Passive tracer adjoint calculations in the state estimate are used to investigate possible mechanisms for the formation of the layers of spice variance. Layers of high spice variance are found to have distinct origins and to be associated with named water masses; high spice variance water in the remnant mixed layer has northerly origin and is identified as Pacific Subarctic water, while the water in the deeper high spice variance layer has southerly origin and is identified as Equatorial Pacific water. The layer of low spice variance near 26.3 kg m(-3) lies between the named water masses and does not have a clear origin. Both effective horizontal diffusivity, kappa(h), and effective diapycnal diffusivity, kappa(v), are elevated relative to the diffusion coefficients set in the numerical simulation, but changes in kappa(h) and kappa(v) with depth are not sufficient to explain the observed layering of thermohaline structure.

Song, H, Miller AJ, Cornuelle BD, Di Lorenzo E.  2011.  Changes in upwelling and its water sources in the California Current System driven by different wind forcing. Dynamics of Atmospheres and Oceans. 52:170-191.   10.1016/j.dynatmoce.2011.03.001   AbstractWebsite

In the California Current System (CCS), upwelling is one of the most important features that enrich the coastal ecosystem. It is highly dependent on both wind stress and wind stress curl, because they contribute to the upwelling system through Ekman transport away from the coast and Ekman pumping as a result of the surface divergence, respectively. Various wind stress products are known to contain sharply different patterns of wind stress, and well-resolved wind forcing products have been shown to drive stronger upwelling due to their better-resolved wind stress curl in previous studies. However, sensitivities of upwelling to changes in wind stress patterns, and each of their control to the source waters and paths of the upwelling cells, are not yet well known for the CCS. Here we study these effects using the Regional Ocean Modeling System (ROMS) and its adjoint model under idealized wind stress forcing patterns representing three widely-used products in addition to a constant wind stress field (no curl): the NCEP/NCAR Reanalysis, the QuikSCAT satellite observations, and the Regional Spectral Model (RSM) downscaling. Changes in currents and isopycnal patterns during the upwelling season are first studied in ROMS under the four different wind stress fields. The model simulations show that the locations of the core of the equatorward flow and the gradient of the cross-shore isopycnals are controlled by the wind stress curl field. The core of the equatorward flow is found under negative wind stress curl, and a deeper upwelling cell is found as the gradient from positive and negative wind stress curl increases. Source waters for the upwelling in each of the four wind stress patterns are investigated using the ROMS adjoint model. The simulations follow a passive tracer backward in time and track the source waters for upwelling in two key areas of interest: inshore and offshore of the Point Sur region of California. The upwelling source waters depend strongly on the depth of the upwelling cell and the alongshore current location. We further relate these results to recent studies of the observed trends in upwelling favorable winds and consequent wind stress curl changes in the CCS. (C) 2011 Elsevier B.V. All rights reserved.

Sarkar, J, Cornuelle BD, Kuperman WA.  2011.  Information and linearity of time-domain complex demodulated amplitude and phase data in shallow water. Journal of the Acoustical Society of America. 130:1242-1252.   10.1121/1.3613709   AbstractWebsite

Wave-theoretic ocean acoustic propagation modeling is used to derive the sensitivity of pressure, and complex demodulated amplitude and phase, at a receiver to the sound speed of the medium using the Born-Frechet derivative. Although the procedure can be applied for pressure as a function of frequency instead of time, the time domain has advantages in practical problems, as linearity and signal-to-noise are more easily assigned in the time domain. The linearity and information content of these sensitivity kernels is explored for an example of a 3-4 kHz broadband pulse transmission in a 1 km shallow water Pekeris waveguide. Full-wave observations (pressure as a function of time) are seen to be too nonlinear for use in most practical cases, whereas envelope and phase data have a wider range of validity and provide complementary information. These results are used in simulated inversions with a more realistic sound speed profile, comparing the performance of amplitude and phase observations. (C) 2011 Acoustical Society of America. [DOI: 10.1121/1.3613709]

Kim, SY, Terrill EJ, Cornuelle BD, Jones B, Washburn L, Moline MA, Paduan JD, Garfield N, Largier JL, Crawford G, Kosro PM.  2011.  Mapping the U.S. West Coast surface circulation: A multiyear analysis of high-frequency radar observations. Journal of Geophysical Research-Oceans. 116   10.1029/2010jc006669   AbstractWebsite

The nearly completed U. S. West Coast (USWC) high-frequency radar (HFR) network provides an unprecedented capability to monitor and understand coastal ocean dynamics and phenomenology through hourly surface current measurements at up to 1 km resolution. The dynamics of the surface currents off the USWC are governed by tides, winds, Coriolis force, low-frequency pressure gradients (less than 0.4 cycles per day (cpd)), and nonlinear interactions of those forces. Alongshore surface currents show poleward propagating signals with phase speeds of O(10) and O(100 to 300) km day(-1) and time scales of 2 to 3 weeks. The signals with slow phase speed are only observed in southern California. It is hypothesized that they are scattered and reflected by shoreline curvature and bathymetry change and do not penetrate north of Point Conception. The seasonal transition of alongshore surface circulation forced by upwelling-favorable winds and their relaxation is captured in fine detail. Submesoscale eddies, identified using flow geometry, have Rossby numbers of 0.1 to 3, diameters in the range of 10 to 60 km, and persistence for 2 to 12 days. The HFR surface currents resolve coastal surface ocean variability continuously across scales from submesoscale to mesoscale (O(1) km to O(1000) km). Their spectra decay with k(-2) at high wave number (less than 100 km) in agreement with theoretical submesoscale spectra below the observational limits of present-day satellite altimeters.