Publications

Export 2 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T [U] V W X Y Z   [Show ALL]
U
Giglio, D, Roemmich D, Cornuelle B.  2013.  Understanding the annual cycle in global steric height. Geophysical Research Letters. 40:4349-4354.   10.1002/grl.50774   AbstractWebsite

Steric variability in the ocean includes diabatic changes in the surface layer due to air-sea buoyancy fluxes and adiabatic changes due to advection, which are dominant in the subsurface ocean. Here the annual signal in subsurface steric height (eta' below 200 db) is computed on a global scale using temperature and salinity profiles from Argo floats. The zonal average of over a season (e.g., eta'(March) - eta'(December)) is compared to the wind-forced vertical advection contribution (Delta eta'(w)) both in the global ocean and in different basins. The results show agreement that extends beyond the tropics. The estimate of Delta eta'(w) is based on the Ekman pumping and assumes that the seasonal vertical velocity is constant over the depth range of interest. This assumption is consistent with annual isopycnal displacements inferred from Argo profiles. The contribution of horizontal advection to Delta eta' is significant in some regions and consistent with differences between Delta eta' and Delta eta'(w).

Powell, BS, Kerry CG, Cornuelle BD.  2013.  Using a numerical model to understand the connection between the ocean and acoustic travel-time measurements. Journal of the Acoustical Society of America. 134:3211-3222.   10.1121/1.4818786   AbstractWebsite

Measurements of acoustic ray travel-times in the ocean provide synoptic integrals of the ocean state between source and receiver. It is known that the ray travel-time is sensitive to variations in the ocean at the transmission time, but the sensitivity of the travel-time to spatial variations in the ocean prior to the acoustic transmission have not been quantified. This study examines the sensitivity of ray travel-time to the temporally and spatially evolving ocean state in the Philippine Sea using the adjoint of a numerical model. A one year series of five day backward integrations of the adjoint model quantify the sensitivity of travel-times to varying dynamics that can alter the travel-time of a 611 km ray by 200 ms. The early evolution of the sensitivities reveals high-mode internal waves that dissipate quickly, leaving the lowest three modes, providing a connection to variations in the internal tide generation prior to the sample time. They are also strongly sensitive to advective effects that alter density along the ray path. These sensitivities reveal how travel-time measurements are affected by both nearby and distant waters. Temporal nonlinearity of the sensitivities suggests that prior knowledge of the ocean state is necessary to exploit the travel-time observations. (C) 2013 Acoustical Society of America.