Publications

Export 8 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D [E] F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
F
Fujii, Y, Cummings J, Xue Y, Schiller A, Lee T, Balmaseda MA, Remy E, Masuda S, Brassington G, Alves O, Cornuelle B, Martin M, Oke P, Smith G, Yang XS.  2015.  Evaluation of the Tropical Pacific Observing System from the ocean data assimilation perspective. Quarterly Journal of the Royal Meteorological Society. 141:2481-2496.   10.1002/qj.2579   AbstractWebsite

The drastic reduction in the number of observation data from the Tropical Atmospheric Ocean (TAO)/Triangle Trans-Ocean Buoy Network (TRITON) array since 2012 has given rise to a need to assess the impact of those data in ocean data assimilation (DA) systems. This article provides a review of existing studies evaluating the impacts of data from the TAO/TRITON array and other components of the Tropical Pacific Observing System (TPOS) on current ocean DA systems used for a variety of operational and research applications. It can be considered as background information that can guide the evaluation exercise of TPOS. Temperature data from TAO/TRITON array are assimilated in most ocean DA systems which cover the tropical Pacific in order to constrain the ocean heat content, stratification, and circulation. It is shown that the impacts of observation data depend considerably on the system and application. The presence of model error often makes the results difficult to interpret. Nevertheless there is consensus that the data from TAO/TRITON generally have positive impacts complementary to Argo floats. In the equatorial Pacific, the impacts are generally around the same level or larger than those of Argo. We therefore conclude that, with the current configuration of TPOS, the loss of the TAO/TRITON data is having a significant detrimental impact on many applications based on ocean DA systems. This conclusion needs to be kept under review because the equatorial coverage by Argo is expected to improve in the future.

G
Gemba, KL, Sarkar J, Cornuelle B, Hodgkiss WS, Kuperman WA.  2018.  Estimating relative channel impulse responses from ships of opportunity in a shallow water environment. The Journal of the Acoustical Society of America. 144:1231-1244.   10.1121/1.5052259   Abstract

The uncertainty of estimating relative channel impulse responses (CIRs) obtained using the radiated signature from a ship of opportunity is investigated. The ship observations were taken during a 1.4 km (11 min) transect in a shallow water environment during the Noise Correlation 2009 (NC09) experiment. Beamforming on the angle associated with the direct ray-path yields an estimate of the ship signature, subsequently used in a matched filter. Relative CIRs are estimated every 2.5 s independently at three vertical line arrays (VLAs). The relative arrival-time uncertainty is inversely proportional to source bandwidth and CIR signal-to-noise ratio, and reached a minimum standard deviation of 5 μs (equivalent to approximately 1 cm spatial displacement). Time-series of direct-path relative arrival-times are constructed for each VLA element across the 11 min observation interval. The overall structure of these time-series compares favorably with that predicted from an array element localization model. The short-term standard deviations calculated on the direct-path (7 μs) and bottom-reflected-path (17 μs) time-series are in agreement with the predicted arrival-time accuracies. The implications of these observed arrival-time accuracies in the context of estimating sound speed perturbations and bottom-depth are discussed.

H
Hoteit, I, Cornuelle B, Heimbach P.  2010.  An eddy-permitting, dynamically consistent adjoint-based assimilation system for the tropical Pacific: Hindcast experiments in 2000. Journal of Geophysical Research-Oceans. 115   10.1029/2009jc005437   AbstractWebsite

An eddy-permitting adjoint-based assimilation system has been implemented to estimate the state of the tropical Pacific Ocean. The system uses the Massachusetts Institute of Technology's general circulation model and its adjoint. The adjoint method is used to adjust the model to observations by controlling the initial temperature and salinity; temperature, salinity, and horizontal velocities at the open boundaries; and surface fluxes of momentum, heat, and freshwater. The model is constrained with most of the available data sets in the tropical Pacific, including Tropical Atmosphere and Ocean, ARGO, expendable bathythermograph, and satellite SST and sea surface height data, and climatologies. Results of hindcast experiments in 2000 suggest that the iterated adjoint-based descent is able to significantly improve the model consistency with the multivariate data sets, providing a dynamically consistent realization of the tropical Pacific circulation that generally matches the observations to within specified errors. The estimated model state is evaluated both by comparisons with observations and by checking the controls, the momentum balances, and the representation of small-scale features that were not well sampled by the observations used in the assimilation. As part of these checks, the estimated controls are smoothed and applied in independent model runs to check that small changes in the controls do not greatly change the model hindcast. This is a simple ensemble-based uncertainty analysis. In addition, the original and smoothed controls are applied to a version of the model with doubled horizontal resolution resulting in a broadly similar "downscaled'' hindcast, showing that the adjustments are not tuned to a single configuration (meaning resolution, topography, and parameter settings). The time-evolving model state and the adjusted controls should be useful for analysis or to supply the forcing, initial, and boundary conditions for runs of other models.

R
Raghukumar, K, Cornuelle BD, Hodgkiss WS, Kuperman WA.  2010.  Experimental demonstration of the utility of pressure sensitivity kernels in time-reversal. Journal of the Acoustical Society of America. 128:989-1003.   10.1121/1.3466858   AbstractWebsite

Pressure sensitivity kernels were recently applied to time-reversal acoustics in an attempt to explain the enhanced stability of the time-reversal focal spot [Raghukumar et al., J. Acoust. Soc. Am. 124, 98-112 (2008)]. The theoretical framework developed was also used to derive optimized source functions, closely related to the inverse filter. The use of these optimized source functions results in an inverse filter-like focal spot which is more robust to medium sound speed fluctuations than both time-reversal and the inverse filter. In this paper the theory is applied to experimental data gathered during the Focused Acoustic Fields experiment, conducted in 2005, north of Elba Island in Italy. Sensitivity kernels are calculated using a range-independent sound-speed profile, for a geometry identical to that used in the experiment, and path sensitivities are identified with observed arrivals. The validity of the kernels in tracking time-evolving Green's functions is studied, along with limitations that result from a linearized analysis. An internal wave model is used to generate an ensemble of sound speed profiles, which are then used along with the calculated sensitivity kernels to derive optimized source functions. Focal spots obtained using the observed Green's functions with these optimized source functions are then compared to those obtained using time-reversal and the inverse-filter. It is shown that these functions are able to provide a focal spot superior to time-reversal while being more robust to sound speed fluctuations than the inverse filter or time-reversal. (C) 2010 Acoustical Society of America. [DOI: 10.1121/1.3466858]

Rasmussen, LL, Cornuelle BD, Levin LA, Largier JL, Di Lorenzo E.  2009.  Effects of small-scale features and local wind forcing on tracer dispersion and estimates of population connectivity in a regional scale circulation model. Journal of Geophysical Research-Oceans. 114   10.1029/2008jc004777   AbstractWebsite

A small-scale model of the Southern California-Northern Baja California coastline has been developed to explore dispersion over the continental shelf, with specific attention to physical parameters pertinent to simulations of larval dispersal and population connectivity. The ROMS simulation employs a nested grid system, with an inner domain resolution of 600 m and an outer domain resolution of 1.5 km. Realistic bathymetry and forcing were employed to investigate the effects of passive transport of tracers introduced at locations with known communities of mytilid mussels along the coastline. The effects of topographic resolution, boundary conditions, and choice of meteorological forcing products on dispersion rates, tracer trajectories, and the subsequent measures of population connectivity were examined. In particular, the choice of wind forcing product resulted in different circulation patterns and tracer trajectories and had especially important consequences on measures of larval connectivity such as self-seeding, potential for larval settlement ( import), and contribution to the pool of available larvae ( export). While some forcing products performed better when model data were compared to field measurements, no product was clearly superior. The uncertainty in results, which may appear minor in larger-scale temperature or surface velocity fields, is significant when examining a sensitive passive tracer. This modeling uncertainty needs to be addressed when interpreting connectivity results.

V
Vera, MD, Heaney KD, Grp N.  2005.  The effect of bottom interaction on transmissions from the North Pacific Acoustic Laboratory Kauai source. Journal of the Acoustical Society of America. 117:1624-1634.   10.1121/1.1854491   AbstractWebsite

Acoustic signals transmitted from a 75-Hz broadband source near Kauai as part of the North Pacific Acoustic Laboratory (NPAL), experiment were recorded on an array of receivers near California at a range of 3890 km, and on a vertical line array at a range of 3336 km in the Gulf of Alaska. Because the source is approximately 2 m above the seafloor, and the bottom depth at the receivers near California is approximately 1800 m, acoustic interaction with the bathymetry complicates the identification of the recorded arrivals with those present in numerical simulations of the experiment. Ray methods were used to categorize acoustic energy according to interactions with the sea bottom and surface and to examine the significance of seafloor geometry. A modal decomposition was also used to examine the role of range-dependent bathymetry and to associate the effects on the acoustic field with seafloor features at specific ranges. Parabolic-equation simulations were performed in order to investigate the sensitivity of the received signal to geoacoustic parameters; shear excitations within the seafloor were modeled using a complex-density, equivalent-fluid technique. Incorporation of bottom interaction into models of the propagation enables an identification between experimental and simulated arrivals. (c) 2005 Acoustical Society of America.

Verdy, A, Cornuelle B, Mazloff MR, Rudnick DL.  2017.  Estimation of the tropical Pacific Ocean state 2010-13. Journal of Atmospheric and Oceanic Technology. 34:1501-1517.   10.1175/jtech-d-16-0223.1   AbstractWebsite

A data-assimilating 1/38 regional dynamical ocean model is evaluated on its ability to synthesize components of the Tropical Pacific Ocean Observing System. The four-dimensional variational data assimilation (4DVAR) method adjusts initial conditions and atmospheric forcing for overlapping 4-month model runs, or hindcasts, that are then combined to give an ocean state estimate for the period 2010-13. Consistency within uncertainty with satellite SSH and Argo profiles is achieved. Comparison to independent observations from Tropical Atmosphere Ocean (TAO) moorings shows that for time scales shorter than 100 days, the state estimate improves estimates of TAO temperature relative to an optimally interpolated Argo product. The improvement is greater at time scales shorter than 20 days, although unpredicted variability in the TAO temperatures implies that TAO observations provide significant information in that band. Larger discrepancies between the state estimate and independent observations from Spray gliders deployed near the Galapagos, Palau, and Solomon Islands are attributed to insufficient model resolution to capture the dynamics in strong current regions and near coasts. The sea surface height forecast skill of the model is assessed. Model forecasts using climatological forcing and boundary conditions are more skillful than climatology out to 50 days compared to persistence, which is a more skillful forecast than climatology out to approximately 20 days. Hindcasts using reanalysis products for atmospheric forcing and open boundary conditions are more skillful than climatology for approximately 120 days or longer, with the exact time scale depending on the accuracy of the state estimate used for initializing and on the reanalysis forcing. Estimating the model representational error is a goal of these experiments.

W
Worcester, PF, Lynch JF, Morawitz WML, Pawlowicz R, Sutton PJ, Cornuelle BD, Johannessen OM, Munk WH, Owens WB, Shuchman R, Spindel RC.  1993.  Evolution of the Large-Scale Temperature-Field in the Greenland Sea During 1988-89 from Tomographic Measurements. Geophysical Research Letters. 20:2211-2214.   10.1029/93gl02373   AbstractWebsite

The Greenland Sea Ocean Acoustic Tomography Experiment was conducted during 1988-89, as one component of the international Greenland Sea Project, to study deep water formation and the response of the gyre to variations in wind stress and ice cover. Six acoustic transceivers moored in an array 200-km across transmitted to one another at four hour intervals. Near the end of February, 1989, a sub-surface temperature maximum at several hundred meters depth disappeared over a suprisingly large area of the central Greenland Sea . While the water column was modified to about 1000 m depth over much of the gyre, the surface remained colder than the deeper water, contrary to what might be expected from simple models of convective renewal.