Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
2015
Lien, RC, Ma B, Lee CM, Sanford TB, Mensah V, Centurioni LR, Cornuelle BD, Gopalakrishnan G, Gordon AL, Chang MH, Jayne SR, Yang YJ.  2015.  The Kuroshio and Luzon undercurrent east of Luzon Island. Oceanography. 28:54-63.   10.5670/oceanog.2015.81   AbstractWebsite

Current structure, transport, and water mass properties of the northward-flowing Kuroshio and the southward-flowing Luzon Undercurrent (LU) were observed for nearly one year, June 8, 2012-June 4, 2013, across the Kuroshio path at 18.75 degrees N. Observations were made from four platforms: an array of six subsurface ADCP moorings, two Seagliders, fivepressure inverted echo sounders (PIES), and five horizontal electric field (HEF) sensors, providing the most detailed time series of the Kuroshio and Luzon Undercurrent water properties to date. Ocean state estimates of the western boundary current system were performed using the MIT general circulation model-four-dimensional variational assimilation (MITgcm-4D-Var) system. Prominent Kuroshio features from observations are simulated well by the numerical model. Annual mean Kuroshio transport, averaged over all platforms, is similar to 16 Sv with a standard deviation similar to 4 Sv. Kuroshio and LU transports and water mass pathways east of Luzon are revealed by Seaglider measurements. In a layer above the salinity maximum associated with North Pacific Tropical Water (NPTW), Kuroshio transport is similar to 7 Sv and contains North Equatorial Current (NEC) and Western Philippine Sea (WPS) waters, with an insignificant amount of South China Sea water on the shallow western flank. In an intermediate layer containing the core of the NPTW, Kuroshio transport is similar to 10 Sv, consisting mostly of NEC water. In the lower layer of the Kuroshio, transport is similar to 1.5 Sv of mostly North Pacific Intermediate Water (NPIW) as a part of WPS waters. Annual mean Luzon Undercurrent southward transport integrated to 1,000 m depth is similar to 2.7 Sv with a standard deviation similar to 2 Sv, carrying solely WPS waters below the salinity minimum of the NPIW. The transport of the western boundary current integrated over the full ocean depth east of Luzon Island is similar to 14 +/- 4.5 Sv. Sources of the water masses in the Kuroshio and Luzon Undercurrent are confirmed qualitatively by the numerical model.

Schonau, MC, Rudnick DL, Cerovecki I, Gopalakrishnan G, Cornuelle BD, McClean JL, Qiu B.  2015.  The Mindanao Current mean structure and connectivity. Oceanography. 28:34-45.   10.5670/oceanog.2015.79   AbstractWebsite

The Mindanao Current (MC), a low-latitude western boundary current in the Pacific Ocean, plays an important role in heat and freshwater transport to the western Pacific warm pool and the Indian Ocean. However, there have been relatively few comprehensive studies of the structure and variability of the MC and its connectivity to regional circulation. The Origins of the Kuroshio and Mindanao Current (OKMC) initiative combines four years of glider observations of the MC, a historical conductivity-temperature-depth (CTD)/float climatology, and results from a global strongly eddying forward ocean general circulation model simulation and a regional ocean state estimate. The MC is resolved as a strong southward current primarily within the upper 200 m, approaching 1 m s(-1), and extending roughly 300 km offshore of Mindanao. Observations and model simulations show a persistent northward Mindanao Undercurrent (MUC) below the thermocline. The MC transports water masses of North Pacific origin southward, while the MUC carries water with South Pacific characteristics northward. The subthermocline transport of the MC and the MUC is connected to other undercurrents in the Philippine Sea. The variability of this transport is a topic of continuing research.