Publications

Export 4 results:
Sort by: [ Author  (Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
S
Subramanian, AC, Miller AJ, Cornuelle BD, Di Lorenzo E, Weller RA, Straneo F.  2013.  A data assimilative perspective of oceanic mesoscale eddy evolution during VOCALS-REx. Atmospheric Chemistry and Physics. 13:3329-3344.   10.5194/acp-13-3329-2013   AbstractWebsite

Oceanic observations collected during the VOCALS-REx cruise time period, 1-30 November 2008, are assimilated into a regional ocean model (ROMS) using 4DVAR and then analyzed for their dynamics. Nonlinearities in the system prevent a complete 30-day fit, so two 15-day fits for 1-15 November and 16-30 November are executed using the available observations of hydrographic temperature and salinity, along with satellite fields of SST and sea-level height anomaly. The fits converge and reduce the cost function significantly, and the results indicated that ROMS is able to successfully reproduce both large-scale and smaller-scale features of the flows observed during the VOCALS-REx cruise. Particular attention is focused on an intensively studied eddy at 76 degrees W, 19 degrees S. The ROMS fits capture this eddy as an isolated rotating 3-D vortex with a strong subsurface signature in velocity, temperature and anomalously low salinity. The eddy has an average temperature anomaly of approximately -0.5 degrees C over a depth range from 50-600 m and features a cold anomaly of approximately -1 degrees C near 150 m depth. The eddy moves northwestward and elongates during the second 15-day fit. It exhibits a strong signature in the Okubo-Weiss parameter, which indicates significant non-linearity in its evolution. The heat balance for the period of the cruise from the ocean state estimate reveals that the horizontal advection and the vertical mixing processes are the dominant terms that balance the temperature tendency of the upper layer of the ocean locally in time and space. Areal averages around the eddies, for a 15-day period during the cruise, suggest that vertical mixing processes generally balance the surface heating. Although, this indicates only a small role for lateral advective processes in this region during this period, this quasi-instantaneous heat budget analysis cannot be extended to interpret the seasonal or long-term upper ocean heat budget in this region.

R
Rasmussen, LL, Cornuelle BD, Levin LA, Largier JL, Di Lorenzo E.  2009.  Effects of small-scale features and local wind forcing on tracer dispersion and estimates of population connectivity in a regional scale circulation model. Journal of Geophysical Research-Oceans. 114   10.1029/2008jc004777   AbstractWebsite

A small-scale model of the Southern California-Northern Baja California coastline has been developed to explore dispersion over the continental shelf, with specific attention to physical parameters pertinent to simulations of larval dispersal and population connectivity. The ROMS simulation employs a nested grid system, with an inner domain resolution of 600 m and an outer domain resolution of 1.5 km. Realistic bathymetry and forcing were employed to investigate the effects of passive transport of tracers introduced at locations with known communities of mytilid mussels along the coastline. The effects of topographic resolution, boundary conditions, and choice of meteorological forcing products on dispersion rates, tracer trajectories, and the subsequent measures of population connectivity were examined. In particular, the choice of wind forcing product resulted in different circulation patterns and tracer trajectories and had especially important consequences on measures of larval connectivity such as self-seeding, potential for larval settlement ( import), and contribution to the pool of available larvae ( export). While some forcing products performed better when model data were compared to field measurements, no product was clearly superior. The uncertainty in results, which may appear minor in larger-scale temperature or surface velocity fields, is significant when examining a sensitive passive tracer. This modeling uncertainty needs to be addressed when interpreting connectivity results.

O
Orsi, AJ, Cornuelle BD, Severinghaus JP.  2012.  Little Ice Age cold interval in West Antarctica: Evidence from borehole temperature at the West Antarctic Ice Sheet (WAIS) Divide. Geophysical Research Letters. 39   10.1029/2012gl051260   AbstractWebsite

The largest climate anomaly of the last 1000 years in the Northern Hemisphere was the Little Ice Age (LIA) from 1400-1850 C. E., but little is known about the signature of this event in the Southern Hemisphere, especially in Antarctica. We present temperature data from a 300 m borehole at the West Antarctic Ice Sheet (WAIS) Divide. Results show that WAIS Divide was colder than the last 1000-year average from 1300 to 1800 C.E. The temperature in the time period 1400-1800 C.E. was on average 0.52 +/- 0.28 degrees C colder than the last 100-year average. This amplitude is about half of that seen at Greenland Summit (GRIP). This result is consistent with the idea that the LIA was a global event, probably caused by a change in solar and volcanic forcing, and was not simply a seesaw-type redistribution of heat between the hemispheres as would be predicted by some ocean-circulation hypotheses. The difference in the magnitude of the LIA between Greenland and West Antarctica suggests that the feedbacks amplifying the radiative forcing may not operate in the same way in both regions. Citation: Orsi, A. J., B. D. Cornuelle, and J. P. Severinghaus (2012), Little Ice Age cold interval in West Antarctica: Evidence from borehole temperature at the West Antarctic Ice Sheet (WAIS) Divide, Geophys. Res. Lett., 39, L09710, doi: 10.1029/2012GL051260.

H
Haidvogel, DB, Arango H, Budgell WP, Cornuelle BD, Curchitser E, Di Lorenzo E, Fennel K, Geyer WR, Hermann AJ, Lanerolle L, Levin J, McWilliams JC, Miller AJ, Moore AM, Powell TM, Shchepetkin AF, Sherwood CR, Signell RP, Warner JC, Wilkin J.  2008.  Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the Regional Ocean Modeling System. Journal of Computational Physics. 227:3595-3624.   10.1016/j.jcp.2007.06.016   AbstractWebsite

Systematic improvements in algorithmic design of regional ocean circulation models have led to significant enhancement in simulation ability across a wide range of space/time scales and marine system types. As an example, we briefly review the Regional Ocean Modeling System, a member of a general class of three-dimensional, free-surface, terrain-following numerical models. Noteworthy characteristics of the ROMS computational kernel include: consistent temporal averaging of the barotropic mode to guarantee both exact conservation and constancy preservation properties for tracers; redefined barotropic pressure-gradient terms to account for local variations in the density field; vertical interpolation performed using conservative parabolic splines; and higher-order, quasi-monotone advection algorithms. Examples of quantitative skill assessment are shown for a tidally driven estuary, an ice-covered high-latitude sea, a wind- and buoyancy-forced continental shelf, and a mid-latitude ocean basin. The combination of moderate-order spatial approximations, enhanced conservation properties, and quasi-monotone advection produces both more robust and accurate, and less diffusive, solutions than those produced in earlier terrain-following ocean models. Together with advanced methods of data assimilation and novel observing system technologies, these capabilities constitute the necessary ingredients for multi-purpose regional ocean prediction systems. (c) 2007 Elsevier Inc. All rights reserved.