Publications

Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
2013
Dzieciuch, MA, Cornuelle BD, Skarsoulis EK.  2013.  Structure and stability of wave-theoretic kernels in the ocean. Journal of the Acoustical Society of America. 134:3318-3331.   10.1121/1.4818846   AbstractWebsite

Wave-theoretic modeling can be applied to obtain travel-time sensitivity kernels (TSKs) representing the amount ray travel times are affected by sound-speed variations anywhere in the medium. This work explores the spatial frequency content of the TSK compared to expected ocean variability. It also examines the stability of the TSK in environments that produce strong sensitivity of ray paths to initial conditions. The conclusion is that the linear TSK model is an effective predictor of travel-time changes and that the rays perform nearly as well as the full-wave kernel. The TSK is examined in physical space and in wavenumber space, and it is found that this is the key to understanding how the travel time reacts to ocean perturbations. There are minimum vertical and horizontal length scales of ocean perturbations that are required for the travel time to be affected. The result is that the correspondence between true travel times and those calculated from the kernel is high for large-scale perturbations and somewhat less for the small scales. This demonstrates the validity of ray-based inversion of travel time observations for the cases under study. (C) 2013 Acoustical Society of America.

2004
Skarsoulis, EK, Cornuelle BD.  2004.  Travel-time sensitivity kernels in ocean acoustic tomography. Journal of the Acoustical Society of America. 116:227-238.   10.1121/1.1753292   AbstractWebsite

Wave-theoretic ocean acoustic propagation modeling is combined with the peak arrival approach for tomographic travel-time observables to derive the sensitivity kernel of travel times with respect to sound-speed variations. This is the Born-Frechet kernel relating the three-dimensional spatial distribution of sound-speed variations with the induced travel-time variations. The derivation is based on the first Born approximation of the Green's function. The application of the travel-time sensitivity kernel to an ocean acoustic waveguide gives a picture close to the ray-theoretic one in the case of high frequencies. However, in the low-frequency case, of interest in ocean acoustic tomography, for example, there are significant deviations. Low-frequency travel times are sensitive to sound-speed changes in Fresnel-zone-scale areas surrounding the eigenrays, but not on the eigenrays themselves, where the sensitivity is zero. Further, there are areas of positive sensitivity, where, e.g., a sound-speed increase results in an increase of arrival times, i.e., a further delay of arrivals, in contrast with the common expectation. These findings are confirmed by forward acoustic predictions from a coupled-mode code. (C) 2004 Acoustical Society of America.

1994
Worcester, PF, Cornuelle BD, Hildebrand JA, Hodgkiss WS, Duda TF, Boyd J, Howe BM, Mercer JA, Spindel RC.  1994.  A Comparison of Measured and Predicted Broad-Band Acoustic Arrival Patterns in Travel Time-Depth Coordinates at 1000-Km Range. Journal of the Acoustical Society of America. 95:3118-3128.   10.1121/1.409977   AbstractWebsite

Broadband acoustic signals were transmitted from a moored 250-Hz source to a 3-km-long vertical line array of hydrophones 1000 km distant in the eastern North Pacific Ocean during July 1989. The sound-speed field along the great circle path connecting the source and receiver was measured directly by nearly 300 expendable bathythermograph (XBT), conductivity-temperature-depth (CTD), and air-launched expendable bathythermograph (AXBT) casts while the transmissions were in progress. This experiment is unique in combining a vertical receiving array that extends over much of the water column, extensive concurrent environmental measurements, and broadband signals designed to measure acoustic travel times with 1-ms precision. The time-mean travel times of the early raylike arrivals, which are evident as wave fronts sweeping across the receiving array, and the time-mean of the times at which the acoustic reception ends (the final cutoffs) for hydrophones near the sound channel axis, are consistent with ray predictions based on the direct measurements of temperature and salinity, within measurement uncertainty. The comparisons show that subinertial oceanic variability with horizontal wavelengths shorter than 50 km, which is not resolved by the direct measurements, significantly (25 ms peak-to-peak) affects the time-mean ray travel times. The final cutoffs occur significantly later than predicted using ray theory for hydrophones more than 100-200 m off the sound channel axis. Nongeometric effects, such as diffraction at caustics, partially account for this observation.