Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
2015
Kim, SY, Cornuelle BD.  2015.  Coastal ocean climatology of temperature and salinity off the Southern California Bight: Seasonal variability, climate index correlation, and linear trend. Progress in Oceanography. 138:136-157.   10.1016/j.pocean.2015.08.001   AbstractWebsite

A coastal ocean climatology of temperature and salinity in the Southern California Bight is estimated from conductivity-temperature-depth (CTD) and bottle sample profiles collected by historical California Cooperative Oceanic Fisheries Investigation (CalCOFI) cruises (1950-2009; quarterly after 1984) off southern California and quarterly/monthly nearshore CTD surveys (within 30 km from the coast except for the surfzone; 1999-2009) off San Diego and Los Angeles. As these fields are sampled regularly in space, but not in time, conventional Fourier analysis may not be possible. The time dependent temperature and salinity fields are modeled as linear combinations of an annual cycle and its five harmonics, as well as three standard climate indices (El Nino-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Pacific Gyre Oscillation (NPGO)), the Scripps Pier temperature time series, and a mean and linear trend without time lags. Since several of the predictor indices are correlated, the indices are successively orthogonalized to eliminate ambiguity in the identification of the contributed variance of each component. Regression coefficients are displayed in both vertical transects and horizontal maps to evaluate (1) whether the temporal and spatial scales of the two data sets of nearshore and offshore observations are consistent and (2) how oceanic variability at a regional scale is related to variability in the nearshore waters. The data-derived climatology can be used to identify anomalous events and atypical behaviors in regional-scale oceanic variability and to provide background ocean estimates for mapping or modeling. (C) 2015 Elsevier Ltd. All rights reserved.

2005
Schneider, N, Cornuelle BD.  2005.  The forcing of the Pacific decadal oscillation. Journal of Climate. 18:4355-4373.   10.1175/jcli3527.1   AbstractWebsite

The Pacific decadal oscillation (PDO), defined as the leading empirical orthogonal function of North Pacific sea surface temperature anomalies, is a widely used index for decadal variability. It is shown that the PDO can be recovered from a reconstruction of North Pacific sea surface temperature anomalies based on a first-order autoregressive model and forcing by variability of the Aleutian low, El Nino-Southern Oscillation (ENSO), and oceanic zonal advection anomalies in the Kuroshio-Oyashio Extension. The latter results from oceanic Rossby waves that are forced by North Pacific Ekman pumping. The SST response patterns to these processes are not orthogonal, and they determine the spatial characteristics of the PDO. The importance of the different forcing, processes is frequency dependent. At interannual time scales, forcing from ENSO and the Aleutian low determines the response in equal parts. At decadal time scales, zonal advection in the Kuroshio-Oyashio Extension, ENSO, and anomalies of the Aleutian low each account for similar amounts of the PDO variance. These, results support the hypothesis that the PDO is not a dynamical mode, but arises from the superposition of sea surface temperature fluctuations with different dynamical origins.