Export 5 results:
Sort by: Author Title Type [ Year  (Desc)]
Edwards, CA, Moore AM, Hoteit I, Cornuelle BD.  2015.  Regional ocean data assimilation. Annual Review of Marine Science, Vol 7. 7:21-42.   10.1146/annurev-marine-010814-015821   AbstractWebsite

This article reviews the past 15 years of developments in regional ocean data assimilation. A variety of scientific, management, and safety-related objectives motivate marine scientists to characterize many ocean environments, including coastal regions. As in weather prediction, the accurate representation of physical, chemical, and/or biological properties in the ocean is challenging. Models and observations alone provide imperfect representations of the ocean state, but together they can offer improved estimates. Variational and sequential methods are among the most widely used in regional ocean systems, and there have been exciting recent advances in ensemble and four-dimensional variational approaches. These techniques are increasingly being tested and adapted for biogeochemical applications.

Kim, SY, Cornuelle BD, Terrill EJ, Jones B, Washburn L, Moline MA, Paduan JD, Garfield N, Largier JL, Crawford G, Kosro PM.  2013.  Poleward propagating subinertial alongshore surface currents off the US West Coast. Journal of Geophysical Research-Oceans. 118:6791-6806.   10.1002/jgrc.20400   AbstractWebsite

The network comprising 61 high-frequency radar systems along the U.S. West Coast (USWC) provides a unique, high resolution, and broad scale view of ocean surface circulation. Subinertial alongshore surface currents show poleward propagating signals with phase speeds of O(10) and O(100-300) kmd-1 that are consistent with historical in situ observations off the USWC and that can be possibly interpreted as coastally trapped waves (CTWs). The propagating signals in the slow mode are partly observed in southern California, which may result from scattering and reflection of higher-mode CTWs due to curvature of shoreline and bathymetry near Point Conception, California. On the other hand, considering the order of the phase speed in the slow mode, the poleward propagating signals may be attributed to alongshore advection or pressure-driven flows. A statistical regression of coastal winds at National Data Buoy Center buoys on the observed surface currents partitions locally and remotely wind-forced components, isolates footprints of the equatorward propagating storm events in winter off the USWC, and shows the poleward propagating signals year round.

Song, H, Miller AJ, Cornuelle BD, Di Lorenzo E.  2011.  Changes in upwelling and its water sources in the California Current System driven by different wind forcing. Dynamics of Atmospheres and Oceans. 52:170-191.   10.1016/j.dynatmoce.2011.03.001   AbstractWebsite

In the California Current System (CCS), upwelling is one of the most important features that enrich the coastal ecosystem. It is highly dependent on both wind stress and wind stress curl, because they contribute to the upwelling system through Ekman transport away from the coast and Ekman pumping as a result of the surface divergence, respectively. Various wind stress products are known to contain sharply different patterns of wind stress, and well-resolved wind forcing products have been shown to drive stronger upwelling due to their better-resolved wind stress curl in previous studies. However, sensitivities of upwelling to changes in wind stress patterns, and each of their control to the source waters and paths of the upwelling cells, are not yet well known for the CCS. Here we study these effects using the Regional Ocean Modeling System (ROMS) and its adjoint model under idealized wind stress forcing patterns representing three widely-used products in addition to a constant wind stress field (no curl): the NCEP/NCAR Reanalysis, the QuikSCAT satellite observations, and the Regional Spectral Model (RSM) downscaling. Changes in currents and isopycnal patterns during the upwelling season are first studied in ROMS under the four different wind stress fields. The model simulations show that the locations of the core of the equatorward flow and the gradient of the cross-shore isopycnals are controlled by the wind stress curl field. The core of the equatorward flow is found under negative wind stress curl, and a deeper upwelling cell is found as the gradient from positive and negative wind stress curl increases. Source waters for the upwelling in each of the four wind stress patterns are investigated using the ROMS adjoint model. The simulations follow a passive tracer backward in time and track the source waters for upwelling in two key areas of interest: inshore and offshore of the Point Sur region of California. The upwelling source waters depend strongly on the depth of the upwelling cell and the alongshore current location. We further relate these results to recent studies of the observed trends in upwelling favorable winds and consequent wind stress curl changes in the CCS. (C) 2011 Elsevier B.V. All rights reserved.

Kim, SY, Terrill EJ, Cornuelle BD, Jones B, Washburn L, Moline MA, Paduan JD, Garfield N, Largier JL, Crawford G, Kosro PM.  2011.  Mapping the U.S. West Coast surface circulation: A multiyear analysis of high-frequency radar observations. Journal of Geophysical Research-Oceans. 116   10.1029/2010jc006669   AbstractWebsite

The nearly completed U. S. West Coast (USWC) high-frequency radar (HFR) network provides an unprecedented capability to monitor and understand coastal ocean dynamics and phenomenology through hourly surface current measurements at up to 1 km resolution. The dynamics of the surface currents off the USWC are governed by tides, winds, Coriolis force, low-frequency pressure gradients (less than 0.4 cycles per day (cpd)), and nonlinear interactions of those forces. Alongshore surface currents show poleward propagating signals with phase speeds of O(10) and O(100 to 300) km day(-1) and time scales of 2 to 3 weeks. The signals with slow phase speed are only observed in southern California. It is hypothesized that they are scattered and reflected by shoreline curvature and bathymetry change and do not penetrate north of Point Conception. The seasonal transition of alongshore surface circulation forced by upwelling-favorable winds and their relaxation is captured in fine detail. Submesoscale eddies, identified using flow geometry, have Rossby numbers of 0.1 to 3, diameters in the range of 10 to 60 km, and persistence for 2 to 12 days. The HFR surface currents resolve coastal surface ocean variability continuously across scales from submesoscale to mesoscale (O(1) km to O(1000) km). Their spectra decay with k(-2) at high wave number (less than 100 km) in agreement with theoretical submesoscale spectra below the observational limits of present-day satellite altimeters.

Rasmussen, LL, Cornuelle BD, Levin LA, Largier JL, Di Lorenzo E.  2009.  Effects of small-scale features and local wind forcing on tracer dispersion and estimates of population connectivity in a regional scale circulation model. Journal of Geophysical Research-Oceans. 114   10.1029/2008jc004777   AbstractWebsite

A small-scale model of the Southern California-Northern Baja California coastline has been developed to explore dispersion over the continental shelf, with specific attention to physical parameters pertinent to simulations of larval dispersal and population connectivity. The ROMS simulation employs a nested grid system, with an inner domain resolution of 600 m and an outer domain resolution of 1.5 km. Realistic bathymetry and forcing were employed to investigate the effects of passive transport of tracers introduced at locations with known communities of mytilid mussels along the coastline. The effects of topographic resolution, boundary conditions, and choice of meteorological forcing products on dispersion rates, tracer trajectories, and the subsequent measures of population connectivity were examined. In particular, the choice of wind forcing product resulted in different circulation patterns and tracer trajectories and had especially important consequences on measures of larval connectivity such as self-seeding, potential for larval settlement ( import), and contribution to the pool of available larvae ( export). While some forcing products performed better when model data were compared to field measurements, no product was clearly superior. The uncertainty in results, which may appear minor in larger-scale temperature or surface velocity fields, is significant when examining a sensitive passive tracer. This modeling uncertainty needs to be addressed when interpreting connectivity results.