Publications

Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
2015
Qiu, B, Rudnick DL, Cerovecki I, Cornuelle BD, Chen S, Schonau MC, McClean JL, Gopalakrishnan G.  2015.  The Pacific North Equatorial Current: New insights from the Origins of the Kuroshio and Mindanao Currents (OKMC) Project. Oceanography. 28:24-33.   10.5670/oceanog.2015.78   AbstractWebsite

Located at the crossroads of the tropical and subtropical circulations, the westward-flowing North Equatorial Current (NEC) and its subsequent bifurcation off the Philippine coast near 13 degrees N serve as important pathways for heat and water mass exchanges between the mid- and low-latitude North Pacific Ocean. Because the western Pacific warm pool, with sea surface temperatures > 28 degrees C, extends poleward of 17 degrees N in the western North Pacific, the bifurcation and transport partitioning of the NEC into the Kuroshio and Mindanao Currents are likely to affect the temporal evolution of the warm pool through lateral advection. In addition to its influence on physical conditions, NEC variability is also important to the regional biological properties and the fisheries along the Philippine coast and in the western Pacific Ocean. This article synthesizes our current understandings of the NEC, especially those garnered through the recent Origins of the Kuroshio and Mindanao Current (OKMC) project.

2013
Giglio, D, Roemmich D, Cornuelle B.  2013.  Understanding the annual cycle in global steric height. Geophysical Research Letters. 40:4349-4354.   10.1002/grl.50774   AbstractWebsite

Steric variability in the ocean includes diabatic changes in the surface layer due to air-sea buoyancy fluxes and adiabatic changes due to advection, which are dominant in the subsurface ocean. Here the annual signal in subsurface steric height (eta' below 200 db) is computed on a global scale using temperature and salinity profiles from Argo floats. The zonal average of over a season (e.g., eta'(March) - eta'(December)) is compared to the wind-forced vertical advection contribution (Delta eta'(w)) both in the global ocean and in different basins. The results show agreement that extends beyond the tropics. The estimate of Delta eta'(w) is based on the Ekman pumping and assumes that the seasonal vertical velocity is constant over the depth range of interest. This assumption is consistent with annual isopycnal displacements inferred from Argo profiles. The contribution of horizontal advection to Delta eta' is significant in some regions and consistent with differences between Delta eta' and Delta eta'(w).

2003
Willis, JK, Roemmich D, Cornuelle B.  2003.  Combining altimetric height with broadscale profile data to estimate steric height, heat storage, subsurface temperature, and sea-surface temperature variability. Journal of Geophysical Research-Oceans. 108   10.1029/2002jc001755   AbstractWebsite

A new technique is demonstrated for combining altimetric height (AH) and sea-surface temperature (SST) with in situ data to produce improved estimates of 0/800 m steric height (SH), heat content, and temperature variability. The technique uses a linear regression onto AH to construct an initial guess for the subsurface quantity. This guess is then corrected toward the in situ data creating an estimate with substantially less error than could be achieved using either data set alone. Inclusion of the SST data further improves the estimates and illustrates how the procedure can be generalized to allow inclusion of additional data sets. The technique is demonstrated over a region in the southwestern Pacific enclosing the Tasman Sea. Nine-year time series of heat storage and temperature variability, averaged over 4degrees latitude and longitude and 1 year in time, are calculated. The estimates have RMS errors of approximately 4.6 W/m(2) in heat storage, 0.10degreesC in subsurface temperature and 0.11degreesC in surface temperature, and fractional errors of 20, 28, and 18%, respectively, relative to the total variance overall spatial and temporal scales considered. These represent significant improvements over previous estimates of these quantities. All the time series show strong interannual variability including the El Nino event of 1997. Application of these techniques on a global scale could provide new insight into the variability of the general circulation and heat budget of the upper ocean.