Publications

Export 5 results:
Sort by: Author Title Type [ Year  (Desc)]
2013
Ponte, AL, Cornuelle BD.  2013.  Coastal numerical modelling of tides: Sensitivity to domain size and remotely generated internal tide. Ocean Modelling. 62:17-26.   10.1016/j.ocemod.2012.11.007   AbstractWebsite

The propagation of remotely generated superinertial internal tides constitutes a difficulty for the modelling of regional ocean tidal variability which we illustrate in several ways. First, the M2 tidal solution inside a control region located along the Southern California Bight coastline is monitored while the extent of the numerical domain is increased (up to 512 x 512 km). While the amplitude and phase of sea level averaged over the region is quasi-insensitive to domain size, a steady increase of kinetic energy, predominantly baroclinic, is observed with increasing domain size. The increasing flux of energy into the control region suggests that this trend is explained by the growing contribution from remote generation sites of internal tide which can propagate up to the control region. Increasing viscosities confirms this interpretation by lowering baroclinic energy levels and limiting their rate of increase with domain size. Doubling the grid spacing allows consideration of numerical domains 2 times larger. While the coarse grid has lower energy levels than the finer grid, the rate of energy increase with domain size appears to be slowing for the largest domain of the coarse grid simulations. Forcing the smallest domain with depth-varying tidal boundary conditions from the simulation in the largest domain produces energy levels inside the control region comparable to those in the control region for the largest domain, thereby confirming the feasibility of a nested approach. In contrast, simulations forced with a subinertial tidal constituent (K1) show that when the propagation of internal tide is limited, the control region kinetic energy is mostly barotropic and the magnitudes of variations of the kinetic energy with domain size are reduced. (C) 2012 Elsevier Ltd. All rights reserved.

2010
Kim, SY, Cornuelle BD, Terrill EJ.  2010.  Decomposing observations of high-frequency radar-derived surface currents by their forcing mechanisms: Decomposition techniques and spatial structures of decomposed surface currents. Journal of Geophysical Research-Oceans. 115   10.1029/2010jc006222   AbstractWebsite

Surface current observations from a high-frequency radar network deployed in southern San Diego are decomposed according to their driving forces: pure tides and their neighboring off-band energy, local winds, and low frequency. Several superposed ocean responses are present as a result of the complicated bottom topography and relatively weak winds off southern San Diego, as opposed to coastal regions where circulation can be explained by a dominant forcing mechanism. This necessitates an application of a statistical decomposition approach. Surface currents coherent with pure tides are calculated using harmonic analysis. Locally wind-driven surface currents are estimated by regression of observed winds on observed surface currents. The dewinded and detided surface currents are filtered by weighted least-squares fitting assuming white noise and three colored signal bands: low-frequency band (less than 0.4 cycles per day) and near-tidal peaks at the diurnal (K-1) and semidiurnal (M-2) frequencies. The spatial and temporal variability of each part of the decomposed surface currents is investigated in terms of ocean response to the driving forces. In addition, the spatial correlations of individual components exhibit Gaussian and exponential shapes with varying decorrelation length scales.

2009
Kim, SY, Terrill EJ, Cornuelle BD.  2009.  Assessing Coastal Plumes in a Region of Multiple Discharges: The US-Mexico Border. Environmental Science & Technology. 43:7450-7457.   10.1021/es900775p   AbstractWebsite

The San Diego/Tijuana border region has several environmental challenges with regard to assessing water quality impacts resulting from local coastal ocean discharges for which transport is not hindered by political boundaries. While an understanding of the fate and transport of these discharged plumes has a broad audience, the spatial and temporal scales of the physical processes present numerous challenges in conducting assessment with any fidelity. To address these needs, a data-driven model of the transport of both shoreline and offshore discharges is developed and operated in a hindcast mode for a four-year period to analyze regional connectivity between the discharges and the receiving of waters and the coastline. The plume exposure hindcast model is driven by surface current data generated by a network of high-frequency radars. Observations provided by both boat-based CTD measurements and fixed oceanographic moorings are used with the Roberts-Snyder-Baumgartner model to predict the plume rise height. The surface transport model outputs are compared with shoreline samples of fecal indicator bacteria (FIB), and the skill of the model to assess low water quality is evaluated using receiver operating characteristic (ROC) analysis.

Kim, SY, Cornuelle BD, Terrill EJ.  2009.  Anisotropic Response of Surface Currents to the Wind in a Coastal Region. Journal of Physical Oceanography. 39:1512-1533.   10.1175/2009JPO4013.1   Abstract

Analysis of coastal surface currents measured off the coast of San Diego for two years suggests an anisotropic and asymmetric response to the wind, probably as a result of bottom/coastline boundary effects, including pressure gradients. In a linear regression, the statistically estimated anisotropic response explains approximately 20% more surface current variance than an isotropic wind-ocean response model. After steady wind forcing for three days, the isotropic surface current response veers 42 degrees +/- 2 degrees to the right of the wind regardless of wind direction, whereas the anisotropic analysis suggests that the upcoast (onshore) wind stress generates surface currents with 10 degrees +/- 4 degrees (71 degrees +/- 3 degrees) to the right of the wind direction. The anisotropic response thus reflects the dominance of alongshore currents in this coastal region. Both analyses yield wind-driven currents with 3%-5% of the wind speed, as expected. In addition, nonlinear isotropic and anisotropic response functions are considered, and the asymmetric current responses to the wind are examined. These results provide a comprehensive statistical model of the wind-driven currents in the coastal region, which has not been well identified in previous field studies, but is qualitatively consistent with descriptions of the current response in coastal ocean models.

2007
Di Lorenzo, E, Moore AM, Arango HG, Cornuelle BD, Miller AJ, Powell B, Chua BS, Bennett AF.  2007.  Weak and strong constraint data assimilation in the inverse Regional Ocean Modeling System (ROMS): Development and application for a baroclinic coastal upwelling system. Ocean Modelling. 16:160-187.   10.1016/j.ocemod.2006.08.002   AbstractWebsite

We describe the development and preliminary application of the inverse Regional Ocean Modeling System (ROMS), a four dimensional variational (4DVAR) data assimilation system for high-resolution basin-wide and coastal oceanic flows. Inverse ROMS makes use of the recently developed perturbation tangent linear (TL), representer tangent linear (RP) and adjoint (AD) models to implement an indirect representer-based generalized inverse modeling system. This modeling framework is modular. The TL, RP and AD models are used as stand-alone sub-models within the Inverse Ocean Modeling (IOM) system described in [Chua, B.S., Bennett, A.F., 2001. An inverse ocean modeling system. Ocean Modell. 35 137-165.]. The system allows the assimilation of a wide range of observation types and uses an iterative algorithm to solve nonlinear assimilation problems. The assimilation is performed either under the perfect model assumption (strong constraint) or by also allowing for errors in the model dynamics (weak constraints). For the weak constraint case the TL and RP models are modified to include additional forcing terms on the right hand side of the model equations. These terms are needed to account for errors in the model dynamics. Inverse ROMS is tested in a realistic 3D baroclinic upwelling system with complex bottom topography, characterized by strong mesoscale eddy variability. We assimilate synthetic data for upper ocean (0-450 m) temperatures and currents over a period of 10 days using both a high resolution and a spatially and temporally aliased sampling array. During the assimilation period the flow field undergoes substantial changes from the initial state. This allows the inverse solution to extract the dynamically active information from the synthetic observations and improve the trajectory of the model state beyond the assimilation window. Both the strong and weak constraint assimilation experiments show forecast skill greater than persistence and climatology during the 10-20 days after the last observation is assimilated. Further investigation in the functional form of the model error covariance and in the use of the representer tangent linear model may lead to improvement in the forecast skill. (c) 2006 Elsevier Ltd. All rights reserved.