Publications

Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
2005
Andrew, RK, Howe BM, Mercer JA, Group NPAL, Cornuelle B, Colosi J.  2005.  Transverse horizontal spatial coherence of deep arrivals at megameter ranges. Journal of the Acoustical Society of America. 117:1511-1526.   10.1121/1.1854851   AbstractWebsite

Predictions of transverse horizontal spatial coherence from path integral theory are compared with measurements for two ranges between 2000 and 3000 km. The measurements derive from a low-frequency (75 Hz) bottom-mounted source at depth 810 m near Kauai that transmitted m-sequence signals over several years to two bottom-mounted horizontal line arrays in the North Pacific. In this paper we consider the early arriving portion of the deep acoustic field at these arrays. Horizontal coherence length estimates, on the order of 400 m, show good agreement with lengths calculated from theory. These lengths correspond to about 1 degrees in horizontal arrival angle variability using a simple, extended, spatially incoherent source model, Estimates of scintillation index, log-amplitude variance, and decibel intensity variance indicate that the fields were partially saturated. There was no significant seasonal variability in these measures. The scintillation index predictions agree quite well with the dataset estimates; nevertheless, the scattering regime predictions (fully saturated) vary from the regime classification (partially saturated) inferred from observation. This contradictory result suggests that a fuller characterization of scattering regime metrics may be required. (c) 2005 Acoustical Society of America.

1994
Worcester, PF, Cornuelle BD, Hildebrand JA, Hodgkiss WS, Duda TF, Boyd J, Howe BM, Mercer JA, Spindel RC.  1994.  A Comparison of Measured and Predicted Broad-Band Acoustic Arrival Patterns in Travel Time-Depth Coordinates at 1000-Km Range. Journal of the Acoustical Society of America. 95:3118-3128.   10.1121/1.409977   AbstractWebsite

Broadband acoustic signals were transmitted from a moored 250-Hz source to a 3-km-long vertical line array of hydrophones 1000 km distant in the eastern North Pacific Ocean during July 1989. The sound-speed field along the great circle path connecting the source and receiver was measured directly by nearly 300 expendable bathythermograph (XBT), conductivity-temperature-depth (CTD), and air-launched expendable bathythermograph (AXBT) casts while the transmissions were in progress. This experiment is unique in combining a vertical receiving array that extends over much of the water column, extensive concurrent environmental measurements, and broadband signals designed to measure acoustic travel times with 1-ms precision. The time-mean travel times of the early raylike arrivals, which are evident as wave fronts sweeping across the receiving array, and the time-mean of the times at which the acoustic reception ends (the final cutoffs) for hydrophones near the sound channel axis, are consistent with ray predictions based on the direct measurements of temperature and salinity, within measurement uncertainty. The comparisons show that subinertial oceanic variability with horizontal wavelengths shorter than 50 km, which is not resolved by the direct measurements, significantly (25 ms peak-to-peak) affects the time-mean ray travel times. The final cutoffs occur significantly later than predicted using ray theory for hydrophones more than 100-200 m off the sound channel axis. Nongeometric effects, such as diffraction at caustics, partially account for this observation.

1993
Cornuelle, BD, Worcester PF, Hildebrand JA, Hodgkiss WS, Duda TF, Boyd J, Howe BM, Mercer JA, Spindel RC.  1993.  Ocean Acoustic Tomography at 1000-Km Range Using Wave-Fronts Measured with a Large-Aperture Vertical Array. Journal of Geophysical Research-Oceans. 98:16365-16377.   10.1029/93jc01246   AbstractWebsite

Broadband acoustic signals transmitted from a moored 250-Hz source to a 3-km-long vertical line array of hydrophones 1000 km distant in the north central Pacific Ocean were used to determine the amount of information available from tomographic techniques used in the vertical plane connecting a source-receiver pair. A range-independent, pure acoustic inverse to obtain the sound speed field using travel time data from the array is shown to be possible by iterating from climatological data without using any information from concurrent environmental measurements. Range-dependent inversions indicate resolution of components of oceanic variability with horizontal wavelengths shorter than 50 km, although the limited spatial resolution of concurrent direct measurements does not provide a strong cross-validation, since the typical cast spacing of 20-25 km gives a Nyquist wavelength of 40-50 km. The small travel time signals associated with high-wavenumber ocean variability place stringent but achievable requirements on travel time measurement precision. The forward problem for the high-wavenumber components of the model is found to be subject to relatively large linearization errors, however, unless the sound speed field at wavelengths greater than about 50 km is known from other measurements or from a two-dimensional tomographic array. The high-ocean-wavenumber resolution that is in principle available from tomographic measurements is therefore achievable only under restricted conditions.