Export 11 results:
Sort by: Author Title Type [ Year  (Desc)]
Sagen, H, Worcester PF, Dzieciuch MA, Geyer F, Sandven S, Babiker M, Beszczynska-Moller A, Dushaw BD, Cornuelle B.  2017.  Resolution, identification, and stability of broadband acoustic arrivals in Fram Strait. Journal of the Acoustical Society of America. 141:2055-2068.   10.1121/1.4978780   AbstractWebsite

An ocean acoustic tomography system consisting of three moorings with low frequency, broad-band transceivers and a moored receiver located approximately in the center of the triangle formed by the transceivers was installed in the central, deep-water part of Fram Strait during 2010-2012. Comparisons of the acoustic receptions with predictions based on hydrographic sections show that the oceanographic conditions in Fram Strait result in complex arrival patterns in which it is difficult to resolve and identify individual arrivals. In addition, the early arrivals are unstable, with the arrival structures changing significantly over time. The stability parameter a suggests that the instability is likely not due to small-scale variability, but rather points toward strong mesoscale variability in the presence of a relatively weak sound channel as being largely responsible. The estimator-correlator [Dzieciuch, J. Acoust. Soc. Am. 136, 2512-2522 (2014)] is shown to provide an objective formalism for generating travel-time series given the complex propagation conditions. Because travel times obtained from the estimator-correlator are not associated with resolved, identified ray arrivals, inverse methods are needed that do not use sampling kernels constructed from geometric ray paths. One possible approach would be to use travel-time sensitivity kernels constructed for the estimator-correlator outputs. (C) 2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license.

Sarkar, J, Marandet C, Roux P, Walker S, Cornuelle BD, Kuperman WA.  2012.  Sensitivity kernel for surface scattering in a waveguide. Journal of the Acoustical Society of America. 131:111-118.   10.1121/1.3665999   AbstractWebsite

Using the Born approximation, a linearized sensitivity kernel is derived to describe the relationship between a local change at the free surface and its effect on the acoustic propagation in the water column. The structure of the surface scattering kernel is investigated numerically and experimentally for the case of a waveguide at the ultrasonic scale. To better demonstrate the sensitivity of the multipath propagation to the introduction of a localized perturbation at the air-water interface, the kernel is formulated both in terms of point-to-point and beam-to-beam representations. Agreement between theory and experiment suggests applications to sensitivity analysis of the wavefield for sea surface perturbations. (C) 2012 Acoustical Society of America. [DOI: 10.1121/1.3665999]

Raghukumar, K, Cornuelle BD, Hodgkiss WS, Kuperman WA.  2008.  Pressure sensitivity kernels applied to time-reversal acoustics. Journal of the Acoustical Society of America. 124:98-112.   10.1121/1.2924130   AbstractWebsite

Sensitivity kernels for receptions of broadband sound transmissions are used to study the effect of the transmitted signal on the sensitivity of the reception to environmental perturbations. A first-order Born approximation is used to obtain the pressure sensitivity of the received signal to small changes in medium sound speed. The pressure perturbation to the received signal caused by medium sound speed changes is expressed as a linear combination of single-frequency sensitivity kernels weighted by the signal in the frequency domain. This formulation can be used to predict the response of a source transmission to sound speed perturbations. The stability of time-reversal is studied and compared to that of a one-way transmission using sensitivity kernels. In the absence of multipath, a reduction in pressure sensitivity using time reversal is only obtained with multiple sources. This can be attributed both to the presence of independent paths and to cancellations that occur due to the overlap of sensitivity kernels for different source-receiver paths. The sensitivity kernel is then optimized to give a new source transmission scheme that takes into account knowledge of the medium statistics and is related to the regularized inverse filter. (c) 2008 Acoustical Society of America.

Roux, P, Cornuelle BD, Kuperman WA, Hodgkiss WS.  2008.  The structure of raylike arrivals in a shallow-water waveguide. Journal of the Acoustical Society of America. 124:3430-3439.   10.1121/1.2996330   AbstractWebsite

Acoustic remote sensing of the oceans requires a detailed understanding of the acoustic forward problem. The results of a shallow-water transmission experiment between a vertical array of sources and a vertical array of receivers are reported. The source array is used to provide additional degrees of freedom to isolate and track raylike arrivals by beamforming over both source and receiver arrays. The coordinated source-receiver array processing procedure is presented and its effectiveness in an example of tracking raylike arrivals in a fluctuating ocean environment is shown. Many of these arrivals can be tracked over an hour or more and show slowly varying amplitude and phase. The use of a double-beamforming algorithm lays the foundation for shallow-water acoustic remote sensing using travel time and source and receive angles of selected eigenrays. (C) 2008 Acoustical Society of America. [DOI: 10.1121/1.2996330]

Hursky, P, Porter MB, Cornuelle BD, Hodgkiss WS, Kuperman WA.  2004.  Adjoint modeling for acoustic inversion. Journal of the Acoustical Society of America. 115:607-619.   10.1121/1.1636760   AbstractWebsite

The use of adjoint modeling for acoustic inversion is investigated. An adjoint model is derived from a linearized forward propagation model to propagate data-model misfit at the observation points back through the medium to the medium perturbations not being accounted for in the model. This adjoint model can be used to aid in inverting for these unaccounted medium perturbations. Adjoint methods are being applied to a variety of inversion problems, but have not drawn much attention from the underwater acoustic community. This paper presents an application of adjoint methods to acoustic inversion. Inversions are demonstrated in simulation for both range-independent and range-dependent sound speed profiles using the adjoint of a parabolic equation model. Sensitivity and error analyses are discussed showing how the adjoint model enables calculations to be performed in the space of observations, rather than the often much larger space of model parameters. Using an adjoint model enables directions of steepest descent in the model parameters (what we invert for) to be calculated using far fewer modeling runs than if a forward model only were used. (C) 2004 Acoustical Society of America.

Worcester, PF, Cornuelle BD, Dzieciuch MA, Munk WH, Howe BM, Mercer JA, Spindel RC, Colosi JA, Metzger K, Birdsall TG, Baggeroer AB.  1999.  A test of basin-scale acoustic thermometry using a large-aperture vertical array at 3250-km range in the eastern North Pacific Ocean. Journal of the Acoustical Society of America. 105:3185-3201.   10.1121/1.424649   AbstractWebsite

Broadband acoustic signals were transmitted during November 1994 from a 75-Hz source suspended near the depth of the sound-channel axis to a 700-m long vertical receiving array approximately 3250 km distant in the eastern North Pacific Ocean. The early part of the arrival pattern consists of raylike wave fronts that are resolvable, identifiable, and stable. The later part of the arrival pattern does not contain identifiable raylike arrivals, due to scattering from internal-wave-induced sound-speed fluctuations. The observed ray travel times differ from ray predictions based on the sound-speed field constructed using nearly concurrent temperature and salinity measurements by more than a priori variability estimates, suggesting that the equation used to compute sound speed requires refinement. The range-averaged ocean sound speed can be determined with an uncertainty of about 0.05 m/s from the observed ray travel times together with the time at which the near-axial acoustic reception ends, used as a surrogate for the group delay of adiabatic mode 1. The change in temperature over six days can be estimated with an uncertainty of about 0.006 degrees C. The sensitivity of the travel times to ocean variability is concentrated near the ocean surface and at the corresponding conjugate depths, because all of the resolved ray arrivals have upper turning depths within a few hundred meters of the surface. (C) 1999 Acoustical Society of America. [S0001-4966(99)04506-3].

Colosi, JA, Grp A.  1999.  A review of recent results on ocean acoustic wave propagation in random media: Basin scales. Ieee Journal of Oceanic Engineering. 24:138-155.   10.1109/48.757267   AbstractWebsite

Measurements of basin-scale acoustic transmissions made during the last four years by the Acoustic Thermometry of Ocean Climate (ATOC) program have allowed for the study of acoustic fluctuations of low-frequency pulse propagation at ranges of 1000 to 5000 km, Analysis of data from the ATOC Acoustic Engineering Test conducted in November 1994 has revealed new and unexpected results for the physics of ocean acoustic wave propagation in random media, In particular, use of traditional Lambda, Phi methods (using the Garrett-Munk (GM) internal wave model) to identify the wave propagation regime for early identifiable wavefronts predict the saturated regime, whereas observations of intensity probability density functions, intensity variance, and pulse time spread and wander suggest that the propagation is more likely near the border between the unsaturated and partially saturated regimes. Calculations of the diffraction parameter Lambda are very sensitive to the broad-band nature of the transmitted pulse, with CW calculations differing from a simplistic broad-band calculation by 10(3)! A simple model of pulse propagation using the Born approximation shows that CW and broad-band cases are sensitive to a random medium very differently and a theoretical description of broad-band effects for pulse propagation through a random media remains a fundamental unsolved problem in ocean acoustics. The observations show that, at 75-Hz center frequency, acoustic normal mode propagation is strongly nonadiabatic due to random media effects caused by internal waves. Simulations at a lower frequency of 28 Hz suggest that the first few modes might be treated adiabatically even in a random ocean. This raises the possibility of using modal techniques for ocean acoustic tomography, thereby increasing the vertical resolution of thermometry. Finally, the observation of unsaturated or partially saturated propagation for 75-Hz broad-band transmissions, like those of ATOC, suggests that ray-based tomography will be robust at basin-scales. This opens up the possibility of ray-based internal wave tomography using the observables of travel time variance, and vertical and temporal coherence, Using geometrical optics and the GM internal wave spectrum, internal wave tomography for an assortment of parameters of the GM model can be formulated in terms of a mixed linear/nonlinear inverse, This is a significant improvement upon a Monte Carlo approach presented in this paper which is used to infer average internal wave energies as a function of depth for the SLICE89 experiment. However, this Monte Carlo approach demonstrated, for the SLICE89 experiment, that the GM model failed to render a consistent inverse for acoustic energy which sampled the upper 100 m of the ocean, Until a new theory for the forward problem is advanced, internal wave tomography utilizing the signal from strong mode coupling can only be carried out using time-consuming Monte Carlo methods.

Baggeroer, AB, Birdsall TG, Clark C, Colosi JA, Cornuelle BD, Costa D, Dushaw BD, Dzieciuch M, Forbes AMG, Hill C, Howe BM, Marshall J, Menemenlis D, Mercer JA, Metzger K, Munk W, Spindel RC, Stammer D, Worcester PF, Wunsch C.  1998.  Ocean climate change; comparison of acoustic tomography, satellite altimetry, and modeling. Science. 281:1327-1332., Washington, DC, United States (USA): American Association for the Advancement of Science, Washington, DC   10.1126/science.281.5381.1327   AbstractWebsite

Comparisons of gyre-scale acoustic and direct thermal measurements of heat content in the Pacific Ocean, satellite altimeter measurements of sea surface height, and results from a general circulation model show that only about half of the seasonal and year-to-year changes in sea level are attributable to thermal expansion. Interpreting climate change signals from fluctuations in sea level is therefore complicated. The annual cycle of heat flux is 150 ± 25 watts per square meter (peak-to-peak, corresponding to a 0.2°C vertically averaged temperature cycle); an interannual change of similar magnitude is also detected. Meteorological estimates of surface heat flux, if accurate, require a large seasonal cycle in the advective heat flux.

Morawitz, WML, Cornuelle BD, Worcester PF.  1996.  A case study in three-dimensional inverse methods: Combining hydrographic, acoustic, and moored thermistor data in the Greenland sea. Journal of Atmospheric and Oceanic Technology. 13:659-679.   10.1175/1520-0426(1996)013<0659:acsitd>;2   AbstractWebsite

A variety of measurements, including acoustic travel times, moored thermistor time series, and hydrographic stations, were made in the Greenland Sea during 1988-89 to study the evolution of the temperature held throughout the year. This region is of intense oceanographic interest because it is one of the few areas in the world where open-ocean convection to great depths has been observed. This paper describes how the various data types were optimally combined using linear, weighted least squares inverse methods to provide significantly more information about the ocean than can be obtained from any single data type. The application of these methods requires construction of a reference state, a statistical model of ocean temperature variability relative to the reference state, and an analysis of the differing signal-to-noise ratios of each data type. A time-dependent reference state was constructed from all available hydrographic data, reflecting !he basic seasonal variability and keeping the perturbations sufficiently small so that linear inverse methods are applicable. Smoothed estimates of the vertical and horizontal covariances of the sound speed (temperature) variability were derived separately for summer and winter from all available hydrographic and moored thermistor data. The vertical covariances were normalized before bring decomposed into eigenvectors, so that eigenvectors were optimized to fit a fixed percentage of the variance at every depth. The 12 largest redimensionalized eigenvectors compose the vertical basis of the model. A spectral decomposition of a 40-km correlation scale Gaussian covariance is used as the horizontal basis. The uncertainty estimates provided by the inverse method illustrate the characteristics of each dataset in measuring large-scale features during a diversely sampled time period in the winter of 1989. The acoustic data alone resolve about 70% of the variance in the three-dimensional, 3-day average temperature field. The hydrographic data alone resolve approximately 65% of the variance during the selected period but are much less dense or absent over most of the year. The thermistor array alone resolves from 10% to 65% of the temperature variance, doing better near the surface where the most measurements were taken. The combination of the complete 1988-89 acoustic, hydrographic, and thermistor datasets give three-dimensional temperature and heat content estimates that resolve on average about 90% of the expected variance during this particularly densely sampled time period.

Worcester, PF, Cornuelle BD, Hildebrand JA, Hodgkiss WS, Duda TF, Boyd J, Howe BM, Mercer JA, Spindel RC.  1994.  A Comparison of Measured and Predicted Broad-Band Acoustic Arrival Patterns in Travel Time-Depth Coordinates at 1000-Km Range. Journal of the Acoustical Society of America. 95:3118-3128.   10.1121/1.409977   AbstractWebsite

Broadband acoustic signals were transmitted from a moored 250-Hz source to a 3-km-long vertical line array of hydrophones 1000 km distant in the eastern North Pacific Ocean during July 1989. The sound-speed field along the great circle path connecting the source and receiver was measured directly by nearly 300 expendable bathythermograph (XBT), conductivity-temperature-depth (CTD), and air-launched expendable bathythermograph (AXBT) casts while the transmissions were in progress. This experiment is unique in combining a vertical receiving array that extends over much of the water column, extensive concurrent environmental measurements, and broadband signals designed to measure acoustic travel times with 1-ms precision. The time-mean travel times of the early raylike arrivals, which are evident as wave fronts sweeping across the receiving array, and the time-mean of the times at which the acoustic reception ends (the final cutoffs) for hydrophones near the sound channel axis, are consistent with ray predictions based on the direct measurements of temperature and salinity, within measurement uncertainty. The comparisons show that subinertial oceanic variability with horizontal wavelengths shorter than 50 km, which is not resolved by the direct measurements, significantly (25 ms peak-to-peak) affects the time-mean ray travel times. The final cutoffs occur significantly later than predicted using ray theory for hydrophones more than 100-200 m off the sound channel axis. Nongeometric effects, such as diffraction at caustics, partially account for this observation.

Worcester, P, Cornuelle B.  1982.  Ocean acoustic tomography: Currents. Current Measurement, Proceedings of the 1982 IEEE Second Working Conference on. 2:131-135., Hilton Head Island, South CArolina   10.1109/ccm.1982.1158437   Abstract

Synoptic maps of the geostrophic current structure of the mesoscale field can be constructed from the three-dimensional density field provided by ocean acoustic tomography with unidirectional acoustic transmissions. Reciprocal acoustic transmissions can extend the technique by permitting one to directly measure the current field, including the barotropic component. A preliminary reciprocal acoustic transmission experiment at long range (300 km) and low frequency (400 Hz) is planned for autumn 1982.