Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
Moore, AM, Martini MJ, Akella S, Arango HG, Balmaseda M, Bertino L, Ciavatta S, Cornuelle B, Cummings J, Frolov S, Lermusiaux P, Oddo P, Oke PR, Storto A, Teruzzi A, Vidard A, Weaver AT, Assimilation GOVD.  2019.  Synthesis of ocean observations using data assimilation for operational, real-time and reanalysis systems: A more complete picture of the state of the ocean. Frontiers in Marine Science. 6   10.3389/fmars.2019.00090   AbstractWebsite

Ocean data assimilation is increasingly recognized as crucial for the accuracy of real-time ocean prediction systems and historical re-analyses. The current status of ocean data assimilation in support of the operational demands of analysis, forecasting and reanalysis is reviewed, focusing on methods currently adopted in operational and real-time prediction systems. Significant challenges associated with the most commonly employed approaches are identified and discussed. Overarching issues faced by ocean data assimilation are also addressed, and important future directions in response to scientific advances, evolving and forthcoming ocean observing systems and the needs of stakeholders and downstream applications are discussed.

Raghukumar, K, Cornuelle BD, Hodgkiss WS, Kuperman WA.  2008.  Pressure sensitivity kernels applied to time-reversal acoustics. Journal of the Acoustical Society of America. 124:98-112.   10.1121/1.2924130   AbstractWebsite

Sensitivity kernels for receptions of broadband sound transmissions are used to study the effect of the transmitted signal on the sensitivity of the reception to environmental perturbations. A first-order Born approximation is used to obtain the pressure sensitivity of the received signal to small changes in medium sound speed. The pressure perturbation to the received signal caused by medium sound speed changes is expressed as a linear combination of single-frequency sensitivity kernels weighted by the signal in the frequency domain. This formulation can be used to predict the response of a source transmission to sound speed perturbations. The stability of time-reversal is studied and compared to that of a one-way transmission using sensitivity kernels. In the absence of multipath, a reduction in pressure sensitivity using time reversal is only obtained with multiple sources. This can be attributed both to the presence of independent paths and to cancellations that occur due to the overlap of sensitivity kernels for different source-receiver paths. The sensitivity kernel is then optimized to give a new source transmission scheme that takes into account knowledge of the medium statistics and is related to the regularized inverse filter. (c) 2008 Acoustical Society of America.