Export 6 results:
Sort by: Author Title Type [ Year  (Desc)]
Powell, BS, Kerry CG, Cornuelle BD.  2013.  Using a numerical model to understand the connection between the ocean and acoustic travel-time measurements. Journal of the Acoustical Society of America. 134:3211-3222.   10.1121/1.4818786   AbstractWebsite

Measurements of acoustic ray travel-times in the ocean provide synoptic integrals of the ocean state between source and receiver. It is known that the ray travel-time is sensitive to variations in the ocean at the transmission time, but the sensitivity of the travel-time to spatial variations in the ocean prior to the acoustic transmission have not been quantified. This study examines the sensitivity of ray travel-time to the temporally and spatially evolving ocean state in the Philippine Sea using the adjoint of a numerical model. A one year series of five day backward integrations of the adjoint model quantify the sensitivity of travel-times to varying dynamics that can alter the travel-time of a 611 km ray by 200 ms. The early evolution of the sensitivities reveals high-mode internal waves that dissipate quickly, leaving the lowest three modes, providing a connection to variations in the internal tide generation prior to the sample time. They are also strongly sensitive to advective effects that alter density along the ray path. These sensitivities reveal how travel-time measurements are affected by both nearby and distant waters. Temporal nonlinearity of the sensitivities suggests that prior knowledge of the ocean state is necessary to exploit the travel-time observations. (C) 2013 Acoustical Society of America.

Zhang, XB, Cornuelle B, Roemmich D.  2012.  Sensitivity of Western Boundary Transport at the Mean North Equatorial Current Bifurcation Latitude to Wind Forcing. Journal of Physical Oceanography. 42:2056-2072.   10.1175/jpo-d-11-0229.1   AbstractWebsite

The bifurcation of the North Equatorial Current (NEC) plays an important role in the heat and water mass exchanges between the tropical and subtropical gyres in the Pacific Ocean. The variability of western boundary transport (WBT) east of the Philippine coast at the mean NEC bifurcation latitude (12 degrees N) is examined here. A tropical Pacific regional model is set up based on the Massachusetts Institute of Technology general circulation model and its adjoint, which calculates the sensitivities of a defined meridional transport to atmospheric forcing fields and ocean state going backward in time. The adjoint-derived sensitivity of the WBT at the mean NEC bifurcation latitude to surface wind stress is dominated by curl-like patterns that are located farther eastward and southward with increasing time lag. The temporal evolution of the adjoint sensitivity of the WBT to wind stress resembles wind-forced Rossby wave dynamics but propagating with speeds determined by the background stratification and current, suggesting that wind-forced Rossby waves are the underlying mechanism. Interannual-to-decadal variations of the WBT can be hindcast well by multiplying the adjoint sensitivity and the time-lagged wind stress over the whole model domain and summing over time lags. The analysis agrees with previous findings that surface wind stress (especially zonal wind stress in the western subtropical Pacific) largely determines the WBT east of the Philippines, and with a time lag based on Rossby wave propagation. This adjoint sensitivity study quantifies the contribution of wind stress at all latitudes and longitudes and provides a novel perspective to understand the relationship between the WBT and wind forcing over the Pacific Ocean.

Todd, RE, Rudnick DL, Mazloff MR, Cornuelle BD, Davis RE.  2012.  Thermohaline structure in the California Current System: Observations and modeling of spice variance. Journal of Geophysical Research-Oceans. 117   10.1029/2011jc007589   AbstractWebsite

Upper ocean thermohaline structure in the California Current System is investigated using sustained observations from autonomous underwater gliders and a numerical state estimate. Both observations and the state estimate show layers distinguished by the temperature and salinity variability along isopycnals (i.e., spice variance). Mesoscale and submesoscale spice variance is largest in the remnant mixed layer, decreases to a minimum below the pycnocline near 26.3 kg m(-3), and then increases again near 26.6 kg m(-3). Layers of high (low) meso-and submesoscale spice variance are found on isopycnals where large-scale spice gradients are large (small), consistent with stirring of large-scale gradients to produce smaller scale thermohaline structure. Passive tracer adjoint calculations in the state estimate are used to investigate possible mechanisms for the formation of the layers of spice variance. Layers of high spice variance are found to have distinct origins and to be associated with named water masses; high spice variance water in the remnant mixed layer has northerly origin and is identified as Pacific Subarctic water, while the water in the deeper high spice variance layer has southerly origin and is identified as Equatorial Pacific water. The layer of low spice variance near 26.3 kg m(-3) lies between the named water masses and does not have a clear origin. Both effective horizontal diffusivity, kappa(h), and effective diapycnal diffusivity, kappa(v), are elevated relative to the diffusion coefficients set in the numerical simulation, but changes in kappa(h) and kappa(v) with depth are not sufficient to explain the observed layering of thermohaline structure.

Song, H, Miller AJ, Cornuelle BD, Di Lorenzo E.  2011.  Changes in upwelling and its water sources in the California Current System driven by different wind forcing. Dynamics of Atmospheres and Oceans. 52:170-191.   10.1016/j.dynatmoce.2011.03.001   AbstractWebsite

In the California Current System (CCS), upwelling is one of the most important features that enrich the coastal ecosystem. It is highly dependent on both wind stress and wind stress curl, because they contribute to the upwelling system through Ekman transport away from the coast and Ekman pumping as a result of the surface divergence, respectively. Various wind stress products are known to contain sharply different patterns of wind stress, and well-resolved wind forcing products have been shown to drive stronger upwelling due to their better-resolved wind stress curl in previous studies. However, sensitivities of upwelling to changes in wind stress patterns, and each of their control to the source waters and paths of the upwelling cells, are not yet well known for the CCS. Here we study these effects using the Regional Ocean Modeling System (ROMS) and its adjoint model under idealized wind stress forcing patterns representing three widely-used products in addition to a constant wind stress field (no curl): the NCEP/NCAR Reanalysis, the QuikSCAT satellite observations, and the Regional Spectral Model (RSM) downscaling. Changes in currents and isopycnal patterns during the upwelling season are first studied in ROMS under the four different wind stress fields. The model simulations show that the locations of the core of the equatorward flow and the gradient of the cross-shore isopycnals are controlled by the wind stress curl field. The core of the equatorward flow is found under negative wind stress curl, and a deeper upwelling cell is found as the gradient from positive and negative wind stress curl increases. Source waters for the upwelling in each of the four wind stress patterns are investigated using the ROMS adjoint model. The simulations follow a passive tracer backward in time and track the source waters for upwelling in two key areas of interest: inshore and offshore of the Point Sur region of California. The upwelling source waters depend strongly on the depth of the upwelling cell and the alongshore current location. We further relate these results to recent studies of the observed trends in upwelling favorable winds and consequent wind stress curl changes in the CCS. (C) 2011 Elsevier B.V. All rights reserved.

Muccino, JC, Arango HG, Bennett AF, Chua BS, Cornuelle BD, Di Lorenzo E, Egbert GD, Haidvogel D, Levin JC, Luo H, Miller AJ, Moore AA, Zaron ED.  2008.  The Inverse Ocean Modeling system. Part II: Applications. Journal of Atmospheric and Oceanic Technology. 25:1623-1637.   10.1175/2008jtecho522.1   AbstractWebsite

The Inverse Ocean Modeling (IOM) System is a modular system for constructing and running weak-constraint four-dimensional variational data assimilation (W4DVAR) for any linear or nonlinear functionally, smooth dynamical model and observing array. The IOM has been applied to four ocean models with widely varying characteristics. The Primitive Equations Z-coordinate-Harmonic Analysis of Tides (PEZ-HAT) and the Regional Ocean Modeling System (ROMS) are three-dimensional, primitive equations models while the Advanced Circulation model in 2D (ADCIRC-2D) and Spectral Element Ocean Model in 2D (SEOM-2D) are shallow-water models belonging to the general finite-element family. These models. in conjunction with the IOM, have been used to investigate a wide variety of scientific phenomena including tidal. mesoscale, and wind-driven circulation. In all cases, the assimilation of data using the IOM provides a better estimate of the ocean state than the model alone.

Di Lorenzo, E, Moore AM, Arango HG, Cornuelle BD, Miller AJ, Powell B, Chua BS, Bennett AF.  2007.  Weak and strong constraint data assimilation in the inverse Regional Ocean Modeling System (ROMS): Development and application for a baroclinic coastal upwelling system. Ocean Modelling. 16:160-187.   10.1016/j.ocemod.2006.08.002   AbstractWebsite

We describe the development and preliminary application of the inverse Regional Ocean Modeling System (ROMS), a four dimensional variational (4DVAR) data assimilation system for high-resolution basin-wide and coastal oceanic flows. Inverse ROMS makes use of the recently developed perturbation tangent linear (TL), representer tangent linear (RP) and adjoint (AD) models to implement an indirect representer-based generalized inverse modeling system. This modeling framework is modular. The TL, RP and AD models are used as stand-alone sub-models within the Inverse Ocean Modeling (IOM) system described in [Chua, B.S., Bennett, A.F., 2001. An inverse ocean modeling system. Ocean Modell. 35 137-165.]. The system allows the assimilation of a wide range of observation types and uses an iterative algorithm to solve nonlinear assimilation problems. The assimilation is performed either under the perfect model assumption (strong constraint) or by also allowing for errors in the model dynamics (weak constraints). For the weak constraint case the TL and RP models are modified to include additional forcing terms on the right hand side of the model equations. These terms are needed to account for errors in the model dynamics. Inverse ROMS is tested in a realistic 3D baroclinic upwelling system with complex bottom topography, characterized by strong mesoscale eddy variability. We assimilate synthetic data for upper ocean (0-450 m) temperatures and currents over a period of 10 days using both a high resolution and a spatially and temporally aliased sampling array. During the assimilation period the flow field undergoes substantial changes from the initial state. This allows the inverse solution to extract the dynamically active information from the synthetic observations and improve the trajectory of the model state beyond the assimilation window. Both the strong and weak constraint assimilation experiments show forecast skill greater than persistence and climatology during the 10-20 days after the last observation is assimilated. Further investigation in the functional form of the model error covariance and in the use of the representer tangent linear model may lead to improvement in the forecast skill. (c) 2006 Elsevier Ltd. All rights reserved.