Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
Lien, RC, Ma B, Lee CM, Sanford TB, Mensah V, Centurioni LR, Cornuelle BD, Gopalakrishnan G, Gordon AL, Chang MH, Jayne SR, Yang YJ.  2015.  The Kuroshio and Luzon undercurrent east of Luzon Island. Oceanography. 28:54-63.   10.5670/oceanog.2015.81   AbstractWebsite

Current structure, transport, and water mass properties of the northward-flowing Kuroshio and the southward-flowing Luzon Undercurrent (LU) were observed for nearly one year, June 8, 2012-June 4, 2013, across the Kuroshio path at 18.75 degrees N. Observations were made from four platforms: an array of six subsurface ADCP moorings, two Seagliders, fivepressure inverted echo sounders (PIES), and five horizontal electric field (HEF) sensors, providing the most detailed time series of the Kuroshio and Luzon Undercurrent water properties to date. Ocean state estimates of the western boundary current system were performed using the MIT general circulation model-four-dimensional variational assimilation (MITgcm-4D-Var) system. Prominent Kuroshio features from observations are simulated well by the numerical model. Annual mean Kuroshio transport, averaged over all platforms, is similar to 16 Sv with a standard deviation similar to 4 Sv. Kuroshio and LU transports and water mass pathways east of Luzon are revealed by Seaglider measurements. In a layer above the salinity maximum associated with North Pacific Tropical Water (NPTW), Kuroshio transport is similar to 7 Sv and contains North Equatorial Current (NEC) and Western Philippine Sea (WPS) waters, with an insignificant amount of South China Sea water on the shallow western flank. In an intermediate layer containing the core of the NPTW, Kuroshio transport is similar to 10 Sv, consisting mostly of NEC water. In the lower layer of the Kuroshio, transport is similar to 1.5 Sv of mostly North Pacific Intermediate Water (NPIW) as a part of WPS waters. Annual mean Luzon Undercurrent southward transport integrated to 1,000 m depth is similar to 2.7 Sv with a standard deviation similar to 2 Sv, carrying solely WPS waters below the salinity minimum of the NPIW. The transport of the western boundary current integrated over the full ocean depth east of Luzon Island is similar to 14 +/- 4.5 Sv. Sources of the water masses in the Kuroshio and Luzon Undercurrent are confirmed qualitatively by the numerical model.

Giglio, D, Roemmich D, Cornuelle B.  2013.  Understanding the annual cycle in global steric height. Geophysical Research Letters. 40:4349-4354.   10.1002/grl.50774   AbstractWebsite

Steric variability in the ocean includes diabatic changes in the surface layer due to air-sea buoyancy fluxes and adiabatic changes due to advection, which are dominant in the subsurface ocean. Here the annual signal in subsurface steric height (eta' below 200 db) is computed on a global scale using temperature and salinity profiles from Argo floats. The zonal average of over a season (e.g., eta'(March) - eta'(December)) is compared to the wind-forced vertical advection contribution (Delta eta'(w)) both in the global ocean and in different basins. The results show agreement that extends beyond the tropics. The estimate of Delta eta'(w) is based on the Ekman pumping and assumes that the seasonal vertical velocity is constant over the depth range of interest. This assumption is consistent with annual isopycnal displacements inferred from Argo profiles. The contribution of horizontal advection to Delta eta' is significant in some regions and consistent with differences between Delta eta' and Delta eta'(w).

Kim, SY, Cornuelle BD, Terrill EJ, Jones B, Washburn L, Moline MA, Paduan JD, Garfield N, Largier JL, Crawford G, Kosro PM.  2013.  Poleward propagating subinertial alongshore surface currents off the US West Coast. Journal of Geophysical Research-Oceans. 118:6791-6806.   10.1002/jgrc.20400   AbstractWebsite

The network comprising 61 high-frequency radar systems along the U.S. West Coast (USWC) provides a unique, high resolution, and broad scale view of ocean surface circulation. Subinertial alongshore surface currents show poleward propagating signals with phase speeds of O(10) and O(100-300) kmd-1 that are consistent with historical in situ observations off the USWC and that can be possibly interpreted as coastally trapped waves (CTWs). The propagating signals in the slow mode are partly observed in southern California, which may result from scattering and reflection of higher-mode CTWs due to curvature of shoreline and bathymetry near Point Conception, California. On the other hand, considering the order of the phase speed in the slow mode, the poleward propagating signals may be attributed to alongshore advection or pressure-driven flows. A statistical regression of coastal winds at National Data Buoy Center buoys on the observed surface currents partitions locally and remotely wind-forced components, isolates footprints of the equatorward propagating storm events in winter off the USWC, and shows the poleward propagating signals year round.