Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
Zhang, XB, Cornuelle B, Roemmich D.  2012.  Sensitivity of Western Boundary Transport at the Mean North Equatorial Current Bifurcation Latitude to Wind Forcing. Journal of Physical Oceanography. 42:2056-2072.   10.1175/jpo-d-11-0229.1   AbstractWebsite

The bifurcation of the North Equatorial Current (NEC) plays an important role in the heat and water mass exchanges between the tropical and subtropical gyres in the Pacific Ocean. The variability of western boundary transport (WBT) east of the Philippine coast at the mean NEC bifurcation latitude (12 degrees N) is examined here. A tropical Pacific regional model is set up based on the Massachusetts Institute of Technology general circulation model and its adjoint, which calculates the sensitivities of a defined meridional transport to atmospheric forcing fields and ocean state going backward in time. The adjoint-derived sensitivity of the WBT at the mean NEC bifurcation latitude to surface wind stress is dominated by curl-like patterns that are located farther eastward and southward with increasing time lag. The temporal evolution of the adjoint sensitivity of the WBT to wind stress resembles wind-forced Rossby wave dynamics but propagating with speeds determined by the background stratification and current, suggesting that wind-forced Rossby waves are the underlying mechanism. Interannual-to-decadal variations of the WBT can be hindcast well by multiplying the adjoint sensitivity and the time-lagged wind stress over the whole model domain and summing over time lags. The analysis agrees with previous findings that surface wind stress (especially zonal wind stress in the western subtropical Pacific) largely determines the WBT east of the Philippines, and with a time lag based on Rossby wave propagation. This adjoint sensitivity study quantifies the contribution of wind stress at all latitudes and longitudes and provides a novel perspective to understand the relationship between the WBT and wind forcing over the Pacific Ocean.

Morris, M, Roemmich D, Cornuelle B.  1996.  Observations of variability in the South Pacific subtropical gyre. Journal of Physical Oceanography. 26:2359-2380.   10.1175/1520-0485(1996)026<2359:oovits>;2   AbstractWebsite

Variability of the subtropical gyre in the South Pacific Ocean was investigated using high-resolution expendable bathythermograph sections along a repeated track between New Zealand and Hawaii. The southern part of the section sampled most of the zonal flow in the subtropical gyre with the eastward flowing branch between New Zealand and Fiji and the westward branch extending north of Fiji to approximately 10 degrees S. The time series began in September 1987 and extended through 1994, averaging four cruises every year. The geostrophic shear field was calculated, relative to 800 m, with the aid of a mean T-S relationship. Variability was present at a broad range of spatial and temporal scales but annual fluctuations were particularly prominent. The authors conclude that 30 snapshots of temperature, measured over a period of seven years, are sufficient to resolve the annual cycle of the gyre scale circulation along the transect. The shape and intensity of the gyre varied seasonally throughout the water column (0-800 m). Geostrophic transport was most intense (15 Sv, where Sv=10(6)m(3)s(-1)) in November. At this time, the northern edges of eastward dow at the surface and in the thermocline were closest together and the ratio of thermocline to surface transport was highest. Most intense flow occurred approximately two to three months after the basinwide seasonal peak in Ekman pumping. Transport was weakest(ll Sv) in May and was associated with an increase in the poleward slant of the gyre center with depth and a decrease in the ratio of thermocline to surface transport. Seasonal wind forcing was considered as a possible mechanism for the observed annual intensification of the gyre-scale circulation. A simple linear model of thermocline response to local changes in wind stress curl explained a significant fraction of the observed annual variability. Conservation of potential vorticity q yielded an estimate for the absolute mean how (-1 cm s(-1) at 800 m), consistent with direct measurements in the region. Interannual variability, possibly related to the El Nino-Southern Oscillation cycle, was observed. The cold event of 1988/89 appeared to be associated with relatively weak gyre-scale transport. After 1991, gyre-scale transport was more intense and a prominent change in the small-scale circulation occurred, with a shift in the alongtrack wavenumber spectral energy to higher wavenumbers.