Publications

Export 3 results:
Sort by: [ Author  (Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y [Z]   [Show ALL]
Z
Zhang, XB, Cornuelle B, Roemmich D.  2011.  Adjoint Sensitivity of the Nino-3 Surface Temperature to Wind Forcing. Journal of Climate. 24:4480-4493.   10.1175/2011jcli3917.1   AbstractWebsite

The evolution of sea surface temperature (SST) over the eastern equatorial Pacific plays a significant role in the intense tropical air-sea interaction there and is of central importance to the El Nino-Southern Oscillation (ENSO) phenomenon. Effects of atmospheric fields (especially wind stress) and ocean state on the eastern equatorial Pacific SST variations are investigated using the Massachusetts Institute of Technology general circulation model (MITgcm) and its adjoint model, which can calculate the sensitivities of a cost function (in this case the averaged 0-30-m temperature in the Nino-3 region during an ENSO event peak) to previous atmospheric forcing fields and ocean state going backward in time. The sensitivity of the Nino-3 surface temperature to monthly zonal wind stress in preceding months can be understood by invoking mixed layer heat balance, ocean dynamics, and especially linear equatorial wave dynamics. The maximum positive sensitivity of the Nino-3 surface temperature to local wind forcing usually happens similar to 1-2 months before the peak of the ENSO event and is hypothesized to be associated with the Ekman pumping mechanism. In model experiments, its magnitude is closely related to the subsurface vertical temperature gradient, exhibiting strong event-to-event differences with strong (weak) positive sensitivity during La Nina (strong El Nino) events. The adjoint sensitivity to remote wind forcing in the central and western equatorial Pacific is consistent with the standard hypothesis that the remote wind forcing affects the Nino-3 surface temperature indirectly by exciting equatorial Kelvin and Rossby waves and modulating thermocline depth in the Nino-3 region. The current adjoint sensitivity study is consistent with a previous regression-based sensitivity study derived from perturbation experiments. Finally, implication for ENSO monitoring and prediction is also discussed.

Zhang, XB, Cornuelle B, Roemmich D.  2012.  Sensitivity of Western Boundary Transport at the Mean North Equatorial Current Bifurcation Latitude to Wind Forcing. Journal of Physical Oceanography. 42:2056-2072.   10.1175/jpo-d-11-0229.1   AbstractWebsite

The bifurcation of the North Equatorial Current (NEC) plays an important role in the heat and water mass exchanges between the tropical and subtropical gyres in the Pacific Ocean. The variability of western boundary transport (WBT) east of the Philippine coast at the mean NEC bifurcation latitude (12 degrees N) is examined here. A tropical Pacific regional model is set up based on the Massachusetts Institute of Technology general circulation model and its adjoint, which calculates the sensitivities of a defined meridional transport to atmospheric forcing fields and ocean state going backward in time. The adjoint-derived sensitivity of the WBT at the mean NEC bifurcation latitude to surface wind stress is dominated by curl-like patterns that are located farther eastward and southward with increasing time lag. The temporal evolution of the adjoint sensitivity of the WBT to wind stress resembles wind-forced Rossby wave dynamics but propagating with speeds determined by the background stratification and current, suggesting that wind-forced Rossby waves are the underlying mechanism. Interannual-to-decadal variations of the WBT can be hindcast well by multiplying the adjoint sensitivity and the time-lagged wind stress over the whole model domain and summing over time lags. The analysis agrees with previous findings that surface wind stress (especially zonal wind stress in the western subtropical Pacific) largely determines the WBT east of the Philippines, and with a time lag based on Rossby wave propagation. This adjoint sensitivity study quantifies the contribution of wind stress at all latitudes and longitudes and provides a novel perspective to understand the relationship between the WBT and wind forcing over the Pacific Ocean.

Zaba, K, Rudnick DL, Cornuelle B, Gopalakrishnan G, Mazloff M.  2018.  Annual and interannual variability in the California Current System: Comparison of an ocean state estimate with a network of underwater gliders. Journal of Physical Oceanography.   10.1175/jpo-d-18-0037.1   Abstract

A data-constrained state estimate of the southern California Current System (CCS) is presented and compared against withheld CalCOFI data and assimilated glider data over the years 2007-2017. The objective of this comparison is to assess the ability of the California State Estimate (CASE) to reproduce the key physical features of the CCS mean state, annual cycles, and interannual variability along the three sections of the California Underwater Glider Network (CUGN). The assessment focuses on several oceanic metrics deemed most important for characterizing physical variability in the CCS: 50 m potential temperature, 80 m salinity, and 26 kg/m3 isopycnal depth and salinity. In the time-mean, the CASE reproduces large-scale thermohaline and circulation structures, including observed temperature gradients, shoaling isopycnals, and the locations and magnitudes of the equatorward California Current and poleward California Undercurrent. With respect to the annual cycle, the CASE captures the phase and, to a lesser extent, the magnitude of upper ocean warming and stratification in late summer to early fall and of isopycnal heave due to springtime upwelling. The CASE also realistically captures near-surface diapycnal mixing during upwelling season and the semiannual cycle of the California Undercurrent. In terms of interannual variability, the most pronounced signals are the persistent warming and downwelling anomalies of 2014-2016 and a positive isopycnal salinity anomaly that peaked with the 2015-2016 El NiƱo.