Export 56 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V [W] X Y Z   [Show ALL]
Tiemann, CO, Worcester PF, Cornuelle BD.  2001.  Acoustic remote sensing of internal solitary waves and internal tides in the Strait of Gibraltar. Journal of the Acoustical Society of America. 110:798-811.   10.1121/1.1382617   AbstractWebsite

High-frequency underwater acoustic transmissions across the Strait of Gibraltar are used to examine the feasibility of acoustically measuring several physical processes in the Strait, a difficult area to sample with conventional instruments. Internal undular bores propagate along the interface between an upper layer of Atlantic water and a lower layer of Mediterranean water. As they cross the acoustic path they are recognized by their scattering effects in the acoustic record. The time between internal bore crossings is influenced more by the tidal phase of the bore release at the Camarinal Sill than by variability in the bore's propagation time to the acoustic path. When internal bores were present, the acoustic arrival patterns could be classified as one of three types with different internal bore and internal tide amplitudes. The arrival types alternate during spring to neap tide transitions, suggesting that internal bore amplitude is not linearly related to tidal height. The sensitivity of acoustic observables to several physical parameters is investigated using a forward model, and a demonstration of inverse techniques provides estimates of several physical parameters from spring tidal cycles. (C) 2001 Acoustical Society of America.

Tiemann, CO, Worcester PF, Cornuelle BD.  2001.  Acoustic scattering by internal solitary waves in the Strait of Gibraltar. Journal of the Acoustical Society of America. 109:143-154.   10.1121/1.1329624   AbstractWebsite

High-freqnency underwater acoustic transmissions across the Strait of Gibraltar were used to examine acoustic scattering caused by the unique internal wave field in the Strait. Internal solitary waves of 100 m in amplitude propagate along the interface between an upper layer of Atlantic water and a lower layer of Mediterranean water. The interface is also strongly modulated by internal tides of comparable amplitude. As internal solitary waves cross the acoustic path, they cause sharp soundspeed gradients which intermittently refract acoustic rays away from normal sound channels. Internal tides vertically shift soundspeed profiles for additional travel time variability. Although the acoustic scattering is quite complicated, it is also surprisingly robust, making it a good candidate for modeling. Key features of the acoustic arrival pattern can be accounted for in some detail by a model description of the complex hydraulics in the Strait. (C) 2001 Acoustical Society of America. [DOI: 10.1121/1.1329624].

Colosi, JA, Baggeroer AB, Cornuelle BD, Dzieciuch MA, Munk WH, Worcester PF, Dushaw BD, Howe BM, Mercer JA, Spindel RC, Birdsall TG, Metzger K, Forbes AMG.  2005.  Analysis of multipath acoustic, field variability and coherence in the finale of broadband basin-scale transmissions in the North Pacific Ocean. Journal of the Acoustical Society of America. 117:1538-1564.   10.1121/1.1854615   AbstractWebsite

The statistics of low-frequency, long-range acoustic transmissions in the North Pacific Ocean are presented. Broadband signals at center frequencies of 28, 75, and 84 Hz are analyzed at propagation ranges of 3252 to 5171 km, and transmissions were received on 700 and 1400 in long vertical receiver arrays with 35 in hydrophone spacing. In the analysis we focus on the energetic "finale" region of the broadband time front arrival pattern, where a multipath interference pattern exists. A Fourier analysis of 1 s regions in the finale provide narrowband data for examination as well. Two-dimensional (depth and time) phase unwrapping is employed to study separately the complex field phase and intensity. Because data sampling occured in 20 or 40 min intervals followed by long gaps, the acoustic fields are analyzed. in terms of these 20 and 40 min and multiday observation times. An analysis of phase, intensity, and complex envelope variability as a function of depth and time is presented in terms of mean fields, variances, probability density functions (PDFs), covariance, spectra, and coherence. Observations are compared to a random multipath model of frequency and vertical wave number spectra for phase and log intensity, and the observations are compared to a broadband multipath model of scintillation index and coherence. 2005 Acoustical Society of America.

Dushaw, BD, Cornuelle BD, Worcester PF, Howe BM, Luther DS.  1995.  Barotropic and Baroclinic Tides in the Central North Pacific-Ocean Determined from Long-Range Reciprocal Acoustic Transmissions. Journal of Physical Oceanography. 25:631-647.   10.1175/1520-0485(1995)025<0631:babtit>;2   AbstractWebsite

Travel times of reciprocal 1000-km range acoustic transmissions, determined from the 1987 Reciprocal Tomography Experiment, are used to study barotropic tidal currents and a large-scale, coherent baroclinic tide in the central North Pacific Ocean. The difference in reciprocal travel times determines the tidal currents, while the sum of reciprocal travel times determines the baroclinic tide displacement of isotachs (or equivalently, isotherms). The barotropic tidal current accounts for 90% of the observed differential travel time variance. The measured harmonic constants of the eight major tidal constituents of the barotropic tide and the constants determined from current meter measurements agree well with the empirical-numerical tidal models of Schwiderski and Cartwright et al. The amplitudes and phases of the first-mode baroclinic tide determined from sum travel times agree with those determined from moored thermistors and current meters. The baroclinic tidal signals are consistent with a large-scale, phase-locked internal tide, which apparently has propagated northward over 2000 km from the Hawaiian Ridge. The amplitude, phase, and polarization of the first-mode M(2) baroclinic tidal displacement and current are consistent with a northward propagating internal tide. The ratio of baroclinic energy to barotropic energy determined using the range-averaging acoustic transmissions is about 8%, while a ratio of 26% was determined from the point measurements. The large-scale, internal tide energy flux, presumed northward, is estimated to be about 180 W m(-1).

Dushaw, BD, Worcester PF, Cornuelle BD, Howe BM.  1994.  Barotropic Currents and Vorticity in the Central North Pacific-Ocean During Summer 1987 Determined from Long-Range Reciprocal Acoustic Transmissions. Journal of Geophysical Research-Oceans. 99:3263-3272.   10.1029/93jc03335   AbstractWebsite

Large-scale depth-integrated currents and relative vorticity were measured in the central North Pacific Ocean during summer 1987 using long-range reciprocal acoustic transmissions between transceivers in a triangle approximately 1000 km on a side. Inverse techniques were used to estimate the depth-averaged (barotropic) current bihourly at 4-day intervals from differential travel times. Tidal constituent amplitudes and phases found from the acoustically determined currents agree with those found from current meters and with the tidal models of Schwiderski (1980) and Cartwright et al. (1992), providing confirmation that the tomographically derived barotropic currents are correct within the expected uncertainties. The estimated low-frequency, large-scale currents are compared with depth-averaged currents determined by point measurements using current meters and bottom-mounted electrometers. Meridional and zonal currents are calculated using the topographic Sverdrup balance with the Fleet Numerical Oceanography Center wind field. The measured time derivative of the areally averaged relative vorticity is shown to be insignificant to the Sverdrup balance. Currents and vorticity calculated using the Sverdrup balance are an order of magnitude smaller than the observations. The magnitude and variability of the large-scale currents and vorticity determined from the Semtner and Chervin (1988) eddy-resolving model of ocean circulation are similar to the direct measurements.

Miller, AJ, Neilson DJ, Luther DS, Hendershott MC, Cornuelle BD, Worcester PF, Dzieciuch MA, Dushaw BD, Howe BM, Levin JC, Arango HG, Haidvogel DB.  2007.  Barotropic Rossby wave radiation from a model Gulf Stream. Geophysical Research Letters. 34   10.1029/2007gl031937   AbstractWebsite

The barotropic Rossby wave field in the North Atlantic Ocean is studied in an eddy-resolving ocean model simulation. The meandering model Gulf Stream radiates barotropic Rossby waves southward through preferred corridors defined by topographic features. The smoother region between the Bermuda Rise and the mid-Atlantic Ridge is a particularly striking corridor of barotropic wave radiation in the 20-50 day period band. Barotropic Rossby waves are also preferentially excited at higher frequencies over the Bermuda Rise, suggesting resonant excitation of topographic Rossby normal modes. The prevalence of these radiated waves suggests that they may be an important energy sink for the equilibrium state of the Gulf Stream.

Morawitz, WML, Cornuelle BD, Worcester PF.  1996.  A case study in three-dimensional inverse methods: Combining hydrographic, acoustic, and moored thermistor data in the Greenland sea. Journal of Atmospheric and Oceanic Technology. 13:659-679.   10.1175/1520-0426(1996)013<0659:acsitd>;2   AbstractWebsite

A variety of measurements, including acoustic travel times, moored thermistor time series, and hydrographic stations, were made in the Greenland Sea during 1988-89 to study the evolution of the temperature held throughout the year. This region is of intense oceanographic interest because it is one of the few areas in the world where open-ocean convection to great depths has been observed. This paper describes how the various data types were optimally combined using linear, weighted least squares inverse methods to provide significantly more information about the ocean than can be obtained from any single data type. The application of these methods requires construction of a reference state, a statistical model of ocean temperature variability relative to the reference state, and an analysis of the differing signal-to-noise ratios of each data type. A time-dependent reference state was constructed from all available hydrographic data, reflecting !he basic seasonal variability and keeping the perturbations sufficiently small so that linear inverse methods are applicable. Smoothed estimates of the vertical and horizontal covariances of the sound speed (temperature) variability were derived separately for summer and winter from all available hydrographic and moored thermistor data. The vertical covariances were normalized before bring decomposed into eigenvectors, so that eigenvectors were optimized to fit a fixed percentage of the variance at every depth. The 12 largest redimensionalized eigenvectors compose the vertical basis of the model. A spectral decomposition of a 40-km correlation scale Gaussian covariance is used as the horizontal basis. The uncertainty estimates provided by the inverse method illustrate the characteristics of each dataset in measuring large-scale features during a diversely sampled time period in the winter of 1989. The acoustic data alone resolve about 70% of the variance in the three-dimensional, 3-day average temperature field. The hydrographic data alone resolve approximately 65% of the variance during the selected period but are much less dense or absent over most of the year. The thermistor array alone resolves from 10% to 65% of the temperature variance, doing better near the surface where the most measurements were taken. The combination of the complete 1988-89 acoustic, hydrographic, and thermistor datasets give three-dimensional temperature and heat content estimates that resolve on average about 90% of the expected variance during this particularly densely sampled time period.

Gawarkiewicz, G, Jan S, Lermusiaux PFJ, McClean JL, Centurioni L, Taylor K, Cornuelle B, Duda TF, Wang J, Yang YJ, Sanford T, Lien RC, Lee C, Lee MA, Leslie W, Haley PJ, Niiler PP, Gopalakrishnan G, Velez-Belchi P, Lee DK, Kim YY.  2011.  Circulation and Intrusions Northeast of Taiwan: Chasing and Predicting Uncertainty in the Cold Dome. Oceanography. 24:110-121. AbstractWebsite

An important element of present oceanographic research is the assessment and quantification of uncertainty. These studies are challenging in the coastal ocean due to the wide variety of physical processes occurring on a broad range of spatial and temporal scales. In order to assess new methods for quantifying and predicting uncertainty, a joint Taiwan-US field program was undertaken in August/September 2009 to compare model forecasts of uncertainties in ocean circulation and acoustic propagation, with high-resolution in situ observations. The geographical setting was the continental shelf and slope northeast of Taiwan, where a feature called the "cold dome" frequently forms. Even though it is hypothesized that Kuroshio subsurface intrusions are the water sources for the cold dome, the dome's dynamics are highly uncertain, involving multiple scales and many interacting ocean features. During the experiment, a combination of near-surface and profiling drifters, broad-scale and high-resolution hydrography, mooring arrays, remote sensing, and regional ocean model forecasts of fields and uncertainties were used to assess mean fields and uncertainties in the region. River runoff from Typhoon Morakot, which hit Taiwan August 7-8, 2009, strongly affected shelf stratification. In addition to the river runoff, a cold cyclonic eddy advected into the region north of the Kuroshio, resulting in a cold dome formation event. Uncertainty forecasts were successfully employed to guide the hydrographic sampling plans. Measurements and forecasts also shed light on the evolution of cold dome waters, including the frequency of eddy shedding to the north-northeast, and interactions with the Kuroshio and tides. For the first time in such a complex region, comparisons between uncertainty forecasts and the model skill at measurement locations validated uncertainty forecasts. To complement the real-time model simulations, historical simulations with another model show that large Kuroshio intrusions were associated with low sea surface height anomalies east of Taiwan, suggesting that there may be some degree of predictability for Kuroshio intrusions.

Willis, JK, Roemmich D, Cornuelle B.  2003.  Combining altimetric height with broadscale profile data to estimate steric height, heat storage, subsurface temperature, and sea-surface temperature variability. Journal of Geophysical Research-Oceans. 108   10.1029/2002jc001755   AbstractWebsite

A new technique is demonstrated for combining altimetric height (AH) and sea-surface temperature (SST) with in situ data to produce improved estimates of 0/800 m steric height (SH), heat content, and temperature variability. The technique uses a linear regression onto AH to construct an initial guess for the subsurface quantity. This guess is then corrected toward the in situ data creating an estimate with substantially less error than could be achieved using either data set alone. Inclusion of the SST data further improves the estimates and illustrates how the procedure can be generalized to allow inclusion of additional data sets. The technique is demonstrated over a region in the southwestern Pacific enclosing the Tasman Sea. Nine-year time series of heat storage and temperature variability, averaged over 4degrees latitude and longitude and 1 year in time, are calculated. The estimates have RMS errors of approximately 4.6 W/m(2) in heat storage, 0.10degreesC in subsurface temperature and 0.11degreesC in surface temperature, and fractional errors of 20, 28, and 18%, respectively, relative to the total variance overall spatial and temporal scales considered. These represent significant improvements over previous estimates of these quantities. All the time series show strong interannual variability including the El Nino event of 1997. Application of these techniques on a global scale could provide new insight into the variability of the general circulation and heat budget of the upper ocean.

Worcester, PF, Cornuelle BD, Hildebrand JA, Hodgkiss WS, Duda TF, Boyd J, Howe BM, Mercer JA, Spindel RC.  1994.  A Comparison of Measured and Predicted Broad-Band Acoustic Arrival Patterns in Travel Time-Depth Coordinates at 1000-Km Range. Journal of the Acoustical Society of America. 95:3118-3128.   10.1121/1.409977   AbstractWebsite

Broadband acoustic signals were transmitted from a moored 250-Hz source to a 3-km-long vertical line array of hydrophones 1000 km distant in the eastern North Pacific Ocean during July 1989. The sound-speed field along the great circle path connecting the source and receiver was measured directly by nearly 300 expendable bathythermograph (XBT), conductivity-temperature-depth (CTD), and air-launched expendable bathythermograph (AXBT) casts while the transmissions were in progress. This experiment is unique in combining a vertical receiving array that extends over much of the water column, extensive concurrent environmental measurements, and broadband signals designed to measure acoustic travel times with 1-ms precision. The time-mean travel times of the early raylike arrivals, which are evident as wave fronts sweeping across the receiving array, and the time-mean of the times at which the acoustic reception ends (the final cutoffs) for hydrophones near the sound channel axis, are consistent with ray predictions based on the direct measurements of temperature and salinity, within measurement uncertainty. The comparisons show that subinertial oceanic variability with horizontal wavelengths shorter than 50 km, which is not resolved by the direct measurements, significantly (25 ms peak-to-peak) affects the time-mean ray travel times. The final cutoffs occur significantly later than predicted using ray theory for hydrophones more than 100-200 m off the sound channel axis. Nongeometric effects, such as diffraction at caustics, partially account for this observation.

Colosi, JA, Scheer EK, Flatte SM, Cornuelle BD, Dzieciuch MA, Munk WH, Worcester PF, Howe BM, Mercer JA, Spindel RC, Metzger K, Birdsall TG, Baggeroer AB.  1999.  Comparisons of measured and predicted acoustic fluctuations for a 3250-km propagation experiment in the eastern North Pacific Ocean. Journal of the Acoustical Society of America. 105:3202-3218.   10.1121/1.424650   AbstractWebsite

During the Acoustic Engineering Test (AET) of the Acoustic Thermometry of Ocean Climate (ATOC) program, acoustic signals were transmitted from a broadband source with 75-Hz center frequency to a 700-m-long vertical array of 20 hydrophones at a distance of 3252 km receptions occurred over a period of-six days. Each received pulse showed early identifiable timefronts, followed by about 2 s of highly variable energy. For the identifiable timefronts, observations of travel-time variance, average pulse shape, and the probability density function (PDF) of intensity are presented, and calculations of internal-wave contributions to those fluctuations are compared to the observations. Individual timefronts have rms travel time fluctuations of 11 to 19 ms, with time scales of less than 2 h. The pulse time spreads are between 0 and 5.3 ms rms, which suggest that internal-wave-induced travel-time biases are of the same magnitude. The PDFs of intensity for individual ray arrivals are compared to log-normal and exponential distributions. The observed PDFs are closer to the log-normal distribution, and variances of log intensity are between (3.1 dB)(2) (with a scintillation index of 0.74) for late-arriving timefronts and (2.0 dB)(2) (with a scintillation index of 0.2) for the earliest timefronts. Fluctuations of the pulse termination time of the transmissions are observed to be 22 ms rms. The intensity PDF of nonidentified peaks in the pulse crescendo are closer to a log-normal distribution than an exponential distribution, but a Kolmogorov-Smimov test rejects both distributions. The variance of the nonidentified peaks is (3.5 dB)(2) land the-scintillation index is 0.92. As a group, the observations suggest that the propagation is on the border of the unsaturated and partially saturated regimes. After improving the specification of the. ray weighting function, predictions of travel-time variance using the Garrett-Munk (GM) internal-wave spectrum at one-half the reference energy are in good agreement with the observations, and the one-half GM energy level compares well with XBT data taken along the transmission path. Predictions of pulse spread and wave propagation regime are in strong disagreement with the observations. Pulse time spread estimates are nearly two orders of magnitude too large, and Lambda-Phi methods for predicting the wave propagation regime predict full saturation. (C) 1999 Acoustical Society of America. [S0001-4966(99)04606-8].

Subramanian, AC, Miller AJ, Cornuelle BD, Di Lorenzo E, Weller RA, Straneo F.  2013.  A data assimilative perspective of oceanic mesoscale eddy evolution during VOCALS-REx. Atmospheric Chemistry and Physics. 13:3329-3344.   10.5194/acp-13-3329-2013   AbstractWebsite

Oceanic observations collected during the VOCALS-REx cruise time period, 1-30 November 2008, are assimilated into a regional ocean model (ROMS) using 4DVAR and then analyzed for their dynamics. Nonlinearities in the system prevent a complete 30-day fit, so two 15-day fits for 1-15 November and 16-30 November are executed using the available observations of hydrographic temperature and salinity, along with satellite fields of SST and sea-level height anomaly. The fits converge and reduce the cost function significantly, and the results indicated that ROMS is able to successfully reproduce both large-scale and smaller-scale features of the flows observed during the VOCALS-REx cruise. Particular attention is focused on an intensively studied eddy at 76 degrees W, 19 degrees S. The ROMS fits capture this eddy as an isolated rotating 3-D vortex with a strong subsurface signature in velocity, temperature and anomalously low salinity. The eddy has an average temperature anomaly of approximately -0.5 degrees C over a depth range from 50-600 m and features a cold anomaly of approximately -1 degrees C near 150 m depth. The eddy moves northwestward and elongates during the second 15-day fit. It exhibits a strong signature in the Okubo-Weiss parameter, which indicates significant non-linearity in its evolution. The heat balance for the period of the cruise from the ocean state estimate reveals that the horizontal advection and the vertical mixing processes are the dominant terms that balance the temperature tendency of the upper layer of the ocean locally in time and space. Areal averages around the eddies, for a 15-day period during the cruise, suggest that vertical mixing processes generally balance the surface heating. Although, this indicates only a small role for lateral advective processes in this region during this period, this quasi-instantaneous heat budget analysis cannot be extended to interpret the seasonal or long-term upper ocean heat budget in this region.

Dushaw, BD, Worcester PF, Munk WH, Spindel RC, Mercer JA, Howe BM, Metzger K, Birdsall TG, Andrew RK, Dzieciuch MA, Cornuelle BD, Menemenlis D.  2009.  A decade of acoustic thermometry in the North Pacific Ocean. Journal of Geophysical Research-Oceans. 114   10.1029/2008jc005124   AbstractWebsite

Over the decade 1996-2006, acoustic sources located off central California (1996 1999) and north of Kauai (1997-1999, 2002-2006) transmitted to receivers distributed throughout the northeast and north central Pacific. The acoustic travel times are inherently spatially integrating, which suppresses mesoscale variability and provides a precise measure of ray-averaged temperature. Daily average travel times at 4-day intervals provide excellent temporal resolution of the large-scale thermal field. The interannual, seasonal, and shorter-period variability is large, with substantial changes sometimes occurring in only a few weeks. Linear trends estimated over the decade are small compared to the interannual variability and inconsistent from path to path, with some acoustic paths warming slightly and others cooling slightly. The measured travel times are compared with travel times derived from four independent estimates of the North Pacific: (1) climatology, as represented by the World Ocean Atlas 2005 (WOA05); (2) objective analysis of the upper-ocean temperature field derived from satellite altimetry and in situ profiles; (3) an analysis provided by the Estimating the Circulation and Climate of the Ocean project, as implemented at the Jet Propulsion Laboratory (JPL-ECCO); and (4) simulation results from a high-resolution configuration of the Parallel Ocean Program (POP) model. The acoustic data show that WOA05 is a better estimate of the time mean hydrography than either the JPL-ECCO or the POP estimates, both of which proved incapable of reproducing the observed acoustic arrival patterns. The comparisons of time series provide a stringent test of the large-scale temperature variability in the models. The differences are sometimes substantial, indicating that acoustic thermometry data can provide significant additional constraints for numerical ocean models.

Worcester, P, Dushaw BD, Andrew RK, Howe BM, Mercer JA, Spindel RC, Cornuelle B, Dzieciuch M, Birdsall TG, Metzger K, Menemenlis D.  2008.  A decade of acoustic thermometry in the North Pacific Ocean: Using long-range acoustic travel times to test gyre-scale temperature variability derived from other observations and ocean models. Journal of the Acoustical Society of America. 123 AbstractWebsite

Large-scale, range- and depth-averaged temperatures in the North Pacific Ocean were measured by long-range acoustic transmissions over the decade 1996-2006. Acoustic sources off central California and north of Kauai transmitted to receivers throughout the North Pacific. Even though acoustic travel times are spatially integrating, suppressing mesoscale variability and providing a precise measure of large-scale temperature, the travel times sometimes vary significantly on time scales of only a few weeks. The interannual variability is large, with no consistent warming or cooling trends. Comparison of the measured travel times with travel times derived from (i) the World Ocean Atlas 2005 (WOA05), (ii) an upper ocean temperature estimate derived from satellite altimetry and in situ profiles, (iii) an analysis provided by the Estimating the Circulation and Climate of the Ocean (ECCO) project, and (iv) simulation results from a high-resolution configuration of the Parallel Ocean Program (POP) show similarities, but also reveal substantial differences. The differences suggest that the data can provide significant additional constraints for numerical ocean simulations. The acoustic data show that WOA05 is a much better estimate of the time-mean hydrography than either the ECCO or POP estimates and provide significantly better time resolution for large-scale ocean variability than can be derived from satellite altimetry and in situ profiles.

Behringer, D, Birdsall T, Brown M, Cornuelle B, Heinmiller R, Knox R, Metzger K, Munk W, Spiesberger J, Spindel R, Webb D, Worcester P, Wunsch C.  1982.  A demonstration of ocean acoustic tomography. Nature. 299:121-125.   10.1038/299121a0   AbstractWebsite

Over the past decade oceanographers have become increasingly aware of an intense and compact ocean ‘mesoscale’ eddy structure (the ocean weather) that is superimposed on a generally sluggish large-scale circulation (the ocean climate). Traditional ship-based observing systems are not adequate for monitoring the ocean at mesoscale resolution. A 1981 experiment mapped the waters within a 300 × 300 km square south-west of Bermuda, using a peripheral array of moored midwater acoustic sources and receivers. The variable acoustic travel times between all source–receiver pairs were used to construct the three-dimensional (time-variable) eddy fields, using inverse theory. Preliminary results from inversions are consistent with the shipborne and airborne surveys.

Worcester, PF, Lynch JF, Morawitz WML, Pawlowicz R, Sutton PJ, Cornuelle BD, Johannessen OM, Munk WH, Owens WB, Shuchman R, Spindel RC.  1993.  Evolution of the Large-Scale Temperature-Field in the Greenland Sea During 1988-89 from Tomographic Measurements. Geophysical Research Letters. 20:2211-2214.   10.1029/93gl02373   AbstractWebsite

The Greenland Sea Ocean Acoustic Tomography Experiment was conducted during 1988-89, as one component of the international Greenland Sea Project, to study deep water formation and the response of the gyre to variations in wind stress and ice cover. Six acoustic transceivers moored in an array 200-km across transmitted to one another at four hour intervals. Near the end of February, 1989, a sub-surface temperature maximum at several hundred meters depth disappeared over a suprisingly large area of the central Greenland Sea . While the water column was modified to about 1000 m depth over much of the gyre, the surface remained colder than the deeper water, contrary to what might be expected from simple models of convective renewal.

Voronovich, AG, Ostashev VE, Colosi JA, Cornuelle BD, Dushaw BD, Dzieciuch MA, Howe BM, Mercer JA, Spindel RC, Worcester PF.  2002.  Experimental investigation of the horizontal refraction of acoustic signals in the ocean. Izvestiya, Atmospheric and Oceanic Physics. 38:716-719. Abstract
Roux, P, Kuperman WA, Colosi JA, Cornuelle BD, Dushaw BD, Dzieciuch MA, Howe BM, Mercer JA, Munk W, Spindel RC, Worcester PF.  2004.  Extracting coherent wave fronts from acoustic ambient noise in the ocean. Journal of the Acoustical Society of America. 116:1995-2003.   10.1121/1.1797754   AbstractWebsite

A method to obtain coherent acoustic wave fronts by measuring the space-time correlation function of ocean noise between two hydrophones is experimentally demonstrated. Though the sources of ocean noise are uncorrelated, the time-averaged noise correlation function exhibits deterministic waveguide arrival structure embedded in the time-domain Green's function. A theoretical approach is derived for both volume and surface noise sources. Shipping noise is also investigated and simulated results are presented in deep or shallow water configurations. The data of opportunity used to demonstrate the extraction of wave fronts from ocean noise were taken from the synchronized vertical receive arrays used in the frame of the North Pacific Laboratory (NPAL) during time intervals when no source was transmitting. (C) 2004 Acoustical Society of America.

Wiggins, SM, Dorman LRM, Cornuelle BD, Hildebrand JA.  1996.  Hess Deep rift valley structure from seismic tomography. Journal of Geophysical Research-Solid Earth. 101:22335-22353.   10.1029/96jb01230   AbstractWebsite

We present results from a seismic refraction experiment conducted across the Hess Deep rift valley in the equatorial east Pacific. P wave travel times between seafloor explosions and ocean bottom seismographs are analyzed using an iterative stochastic inverse method to produce a velocity model of the subsurface structure. The resulting velocity model differs from typical young, fast spreading, East Pacific Rise crust by approximately +/-1 km/s with slow velocities beneath the valley of the deep and a fast region forming the intrarift ridge. We interpret these velocity contrasts as lithologies originating at different depths and/or alteration of the preexisting rock units. We use our seismic model, along with petrologic and bathymetric data from previous studies, to produce a structural model. The model supports low-angle detachment faulting with serpentinization of peridotite as the preferred mechanism for creating the distribution and exposure of lower crustal and upper mantle rocks within Hess Deep.

Voronovich, AG, Ostashev VE, Colosi JA, Cornuelle BD, Dushaw BD, Dzieciuch MA, Howe BM, Mercer JA, Munk WH, Spindel RC, Worcester PF, The NPAL Group.  2005.  Horizontal refraction of acoustic signals retrieved from the North Pacific Acoustic Laboratory billboard array data. Journal of the Acoustical Society of America. 117:1527-1537.   10.1121/1.1854435   AbstractWebsite

In 1998-1999, a comprehensive low-frequency long-range sound propagation experiment was carried out by the North Pacific, Acoustic Laboratory (NPAL). In this paper, the data recorded during the experiment by a, billboard acoustic array were used to compute the horizontal refraction of the arriving acoustic signals using both ray- and mode-based approaches. The results obtained by these two approaches are consistent. The acoustic signals exhibited weak (if any) regular horizontal refraction throughut most of the experiment. However, it increased up to 0.4 deg (the sound rays were bent towards the south) at the beginning and the end of the experiment. These increases occurred during midspring to midsummer time and seemed to reflect seasonal trends in the horizontal gradients of the sound speed. The measured standard deviation of the horizontal refraction angles was about 0.37 deg, which is close to an estimate of this standard deviation calculated using 3D modal theory of low-frequency sound propagation through internal gravity waves. (c) 2005 Acoustical Society of America.

Sutton, P, Morawitz WML, Cornuelle BD, Masters G, Worcester PF.  1994.  Incorporation of Acoustic Normal-Mode Data Into Tomographic Inversions in the Greenland Sea. Journal of Geophysical Research-Oceans. 99:12487-12502.   10.1029/94jc00210   AbstractWebsite

Acoustic normal mode group velocity data are extracted from tomographic receptions in the Greenland Sea using a combination of spatial filtering with data from a six-element hydrophone array and variable time windowing. The mode group velocity data, together with ray travel time data, are used in inversions to obtain the range average sound speed profile. The modal data significantly improve near-surface resolution, which is where the largest oceanographic signals occur. Inverse results using only acoustic data are consistent with point measurements, a Seasoar section, and sparse conductivity-temperature-depth data.

Send, U, Worcester PF, Cornuelle BD, Tiemann CO, Baschek B.  2002.  Integral measurements of mass transport and heat content in the Strait of Gibraltar from acoustic transmissions. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 49:4069-4095.   10.1016/s0967-0645(02)00143-1   AbstractWebsite

Three 2 kHz acoustic transceivers were deployed on either side of the eastern entrance of the Strait of Gibraltar during April-May 1996 to determine the feasibility of using acoustic methods to make routine, rapidly repeated, horizontally integrated measurements of flow and temperature in straits. Reciprocal transmissions between the transceivers were used to test the feasibility of using traditional ray differential travel times to monitor the component of flow along the acoustic paths. Transmissions directly across the Strait were used to test the feasibility of using horizontal arrival angle fluctuations and acoustic intensity scintillations to monitor the flow perpendicular to the acoustic path. The geometry was selected to provide ray paths that only sample the lower-layer Mediterranean water, so that the feasibility of monitoring the Mediterranean outflow using the various methods could be evaluated. The acoustic scintillation method did not yield useful current estimates, but the experimental parameters were not optimized for this approach. Since the low-frequency variability in log-amplitude was found to be highly correlated at receivers 228 m apart, it is possible that acoustic scintillation measurements using different receiver spacings and more rapid sampling might yield better results. The horizontal deflection method gave encouraging results at the time of neap tides, but less so during spring tides. For this approach, both theoretical estimates and measured phase differences between the horizontally separated receivers suggest that internal-wave-induced horizontal arrival angle fluctuations may fundamentally limit the precision with which arrival angles can be measured. Further work is needed to determine if a smaller horizontal spacing and higher signal-to-noise ratios would yield better results. Reciprocal travel time measurements diagonally across the Strait performed the best of the three methods, giving absolute flow estimates consistent with those derived from current-meter data. The fractional uncertainty variance for the lower layer tidal transport from a single tomographic path was estimated to be 0.017 (i.e. 98% of the a priori tidal transport variance was resolved). The spatial scales of the sub-tidal flow are thought to be significantly shorter than those of the tidal flow, however, which means that a more elaborate monitoring network is required to achieve the same performance for sub-tidal variability. Finally, sum travel times from the reciprocal transmissions were found to provide good measurements of the temperature and heat content in the lower layer. (C) 2002 Published by Elsevier Science Ltd.

Willis, JK, Roemmich D, Cornuelle B.  2004.  Interannual variability in upper ocean heat content, temperature, and thermosteric expansion on global scales. Journal of Geophysical Research-Oceans. 109   10.1029/2003jc002260   AbstractWebsite

[1] Satellite altimetric height was combined with approximately 1,000,000 in situ temperature profiles to produce global estimates of upper ocean heat content, temperature, and thermosteric sea level variability on interannual timescales. Maps of these quantities from mid-1993 through mid-2003 were calculated using the technique developed by Willis et al. [ 2003]. The time series of globally averaged heat content contains a small amount of interannual variability and implies an oceanic warming rate of 0.86 +/- 0.12 watts per square meter of ocean (0.29 +/- 0.04 pW) from 1993 to 2003 for the upper 750 m of the water column. As a result of the warming, thermosteric sea level rose at a rate of 1.6 +/- 0.3 mm/yr over the same time period. Maps of yearly heat content anomaly show patterns of warming commensurate with ENSO variability in the tropics, but also show that a large part of the trend in global, oceanic heat content is caused by regional warming at midlatitudes in the Southern Hemisphere. In addition to quantifying interannual variability on a global scale, this work illustrates the importance of maintaining continuously updated monitoring systems that provide global coverage of the world's oceans. Ongoing projects, such as the Jason/TOPEX series of satellite altimeters and the Argo float program, provide a critical foundation for characterizing variability on regional, basin, and global scales and quantifying the oceans' role as part of the climate system.

Wolfe, CL, Cessi P, Cornuelle BD.  2017.  An intrinsic mode of interannual variability in the Indian Ocean. Journal of Physical Oceanography. 47:701-719.   10.1175/jpo-d-16-0177.1   AbstractWebsite

An intrinsic mode of self-sustained, interannual variability is identified in a coarse-resolution ocean model forced by an annually repeating atmospheric state. The variability has maximumloading in the Indian Ocean, with a significant projection into the South Atlantic Ocean. It is argued that this intrinsic mode is caused by baroclinic instability of the model's Leeuwin Current, which radiates out to the tropical Indian and South Atlantic Oceans as long Rossby waves at a period of 4 yr. This previously undescribed mode has a remarkably narrowband time series. However, the variability is not synchronized with the annual cycle; the phase of the oscillation varies chaotically on decadal time scales. The presence of this internal mode reduces the predictability of the ocean circulation by obscuring the response to forcing or initial condition perturbations. The signature of this mode can be seen in higher-resolution global ocean models driven by high-frequency atmospheric forcing, but altimeter and assimilation analyses do not show obvious signatures of such a mode, perhaps because of insufficient duration.

Kim, SY, Terrill EJ, Cornuelle BD, Jones B, Washburn L, Moline MA, Paduan JD, Garfield N, Largier JL, Crawford G, Kosro PM.  2011.  Mapping the U.S. West Coast surface circulation: A multiyear analysis of high-frequency radar observations. Journal of Geophysical Research-Oceans. 116   10.1029/2010jc006669   AbstractWebsite

The nearly completed U. S. West Coast (USWC) high-frequency radar (HFR) network provides an unprecedented capability to monitor and understand coastal ocean dynamics and phenomenology through hourly surface current measurements at up to 1 km resolution. The dynamics of the surface currents off the USWC are governed by tides, winds, Coriolis force, low-frequency pressure gradients (less than 0.4 cycles per day (cpd)), and nonlinear interactions of those forces. Alongshore surface currents show poleward propagating signals with phase speeds of O(10) and O(100 to 300) km day(-1) and time scales of 2 to 3 weeks. The signals with slow phase speed are only observed in southern California. It is hypothesized that they are scattered and reflected by shoreline curvature and bathymetry change and do not penetrate north of Point Conception. The seasonal transition of alongshore surface circulation forced by upwelling-favorable winds and their relaxation is captured in fine detail. Submesoscale eddies, identified using flow geometry, have Rossby numbers of 0.1 to 3, diameters in the range of 10 to 60 km, and persistence for 2 to 12 days. The HFR surface currents resolve coastal surface ocean variability continuously across scales from submesoscale to mesoscale (O(1) km to O(1000) km). Their spectra decay with k(-2) at high wave number (less than 100 km) in agreement with theoretical submesoscale spectra below the observational limits of present-day satellite altimeters.