Export 11 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V [W] X Y Z   [Show ALL]
Wiggins, SM, Dorman LRM, Cornuelle BD, Hildebrand JA.  1996.  Hess Deep rift valley structure from seismic tomography. Journal of Geophysical Research-Solid Earth. 101:22335-22353.   10.1029/96jb01230   AbstractWebsite

We present results from a seismic refraction experiment conducted across the Hess Deep rift valley in the equatorial east Pacific. P wave travel times between seafloor explosions and ocean bottom seismographs are analyzed using an iterative stochastic inverse method to produce a velocity model of the subsurface structure. The resulting velocity model differs from typical young, fast spreading, East Pacific Rise crust by approximately +/-1 km/s with slow velocities beneath the valley of the deep and a fast region forming the intrarift ridge. We interpret these velocity contrasts as lithologies originating at different depths and/or alteration of the preexisting rock units. We use our seismic model, along with petrologic and bathymetric data from previous studies, to produce a structural model. The model supports low-angle detachment faulting with serpentinization of peridotite as the preferred mechanism for creating the distribution and exposure of lower crustal and upper mantle rocks within Hess Deep.

Wiggins, SM, Dorman LM, Cornuelle BD.  1997.  Topography can affect linearization in tomographic inversions. Geophysics. 62:1797-1803.   10.1190/1.1444280   AbstractWebsite

Linearized inverse techniques commonly are used to solve for velocity models from traveltime data. The amount that a model may change without producing large, nonlinear changes in the predicted traveltime data is dependent on the surface topography and parameterization. Simple, one-layer, laterally homogeneous, constant-gradient models are used to study analytically and empirically the effect of topography and parameterization on the linearity of the model-data relationship. If, in a weak-velocity-gradient model, rays turn beneath a valley with topography similar to the radius of curvature of the raypaths, then large nonlinearities will result from small model perturbations. Hills, conversely, create environments in which the data are more nearly linearly related to models with the same model perturbations.

Willis, JK, Roemmich D, Cornuelle B.  2003.  Combining altimetric height with broadscale profile data to estimate steric height, heat storage, subsurface temperature, and sea-surface temperature variability. Journal of Geophysical Research-Oceans. 108   10.1029/2002jc001755   AbstractWebsite

A new technique is demonstrated for combining altimetric height (AH) and sea-surface temperature (SST) with in situ data to produce improved estimates of 0/800 m steric height (SH), heat content, and temperature variability. The technique uses a linear regression onto AH to construct an initial guess for the subsurface quantity. This guess is then corrected toward the in situ data creating an estimate with substantially less error than could be achieved using either data set alone. Inclusion of the SST data further improves the estimates and illustrates how the procedure can be generalized to allow inclusion of additional data sets. The technique is demonstrated over a region in the southwestern Pacific enclosing the Tasman Sea. Nine-year time series of heat storage and temperature variability, averaged over 4degrees latitude and longitude and 1 year in time, are calculated. The estimates have RMS errors of approximately 4.6 W/m(2) in heat storage, 0.10degreesC in subsurface temperature and 0.11degreesC in surface temperature, and fractional errors of 20, 28, and 18%, respectively, relative to the total variance overall spatial and temporal scales considered. These represent significant improvements over previous estimates of these quantities. All the time series show strong interannual variability including the El Nino event of 1997. Application of these techniques on a global scale could provide new insight into the variability of the general circulation and heat budget of the upper ocean.

Willis, JK, Roemmich D, Cornuelle B.  2004.  Interannual variability in upper ocean heat content, temperature, and thermosteric expansion on global scales. Journal of Geophysical Research-Oceans. 109   10.1029/2003jc002260   AbstractWebsite

[1] Satellite altimetric height was combined with approximately 1,000,000 in situ temperature profiles to produce global estimates of upper ocean heat content, temperature, and thermosteric sea level variability on interannual timescales. Maps of these quantities from mid-1993 through mid-2003 were calculated using the technique developed by Willis et al. [ 2003]. The time series of globally averaged heat content contains a small amount of interannual variability and implies an oceanic warming rate of 0.86 +/- 0.12 watts per square meter of ocean (0.29 +/- 0.04 pW) from 1993 to 2003 for the upper 750 m of the water column. As a result of the warming, thermosteric sea level rose at a rate of 1.6 +/- 0.3 mm/yr over the same time period. Maps of yearly heat content anomaly show patterns of warming commensurate with ENSO variability in the tropics, but also show that a large part of the trend in global, oceanic heat content is caused by regional warming at midlatitudes in the Southern Hemisphere. In addition to quantifying interannual variability on a global scale, this work illustrates the importance of maintaining continuously updated monitoring systems that provide global coverage of the world's oceans. Ongoing projects, such as the Jason/TOPEX series of satellite altimeters and the Argo float program, provide a critical foundation for characterizing variability on regional, basin, and global scales and quantifying the oceans' role as part of the climate system.

Wolfe, CL, Cessi P, Cornuelle BD.  2017.  An intrinsic mode of interannual variability in the Indian Ocean. Journal of Physical Oceanography. 47:701-719.   10.1175/jpo-d-16-0177.1   AbstractWebsite

An intrinsic mode of self-sustained, interannual variability is identified in a coarse-resolution ocean model forced by an annually repeating atmospheric state. The variability has maximumloading in the Indian Ocean, with a significant projection into the South Atlantic Ocean. It is argued that this intrinsic mode is caused by baroclinic instability of the model's Leeuwin Current, which radiates out to the tropical Indian and South Atlantic Oceans as long Rossby waves at a period of 4 yr. This previously undescribed mode has a remarkably narrowband time series. However, the variability is not synchronized with the annual cycle; the phase of the oscillation varies chaotically on decadal time scales. The presence of this internal mode reduces the predictability of the ocean circulation by obscuring the response to forcing or initial condition perturbations. The signature of this mode can be seen in higher-resolution global ocean models driven by high-frequency atmospheric forcing, but altimeter and assimilation analyses do not show obvious signatures of such a mode, perhaps because of insufficient duration.

Worcester, PF, Lynch JF, Morawitz WML, Pawlowicz R, Sutton PJ, Cornuelle BD, Johannessen OM, Munk WH, Owens WB, Shuchman R, Spindel RC.  1993.  Evolution of the Large-Scale Temperature-Field in the Greenland Sea During 1988-89 from Tomographic Measurements. Geophysical Research Letters. 20:2211-2214.   10.1029/93gl02373   AbstractWebsite

The Greenland Sea Ocean Acoustic Tomography Experiment was conducted during 1988-89, as one component of the international Greenland Sea Project, to study deep water formation and the response of the gyre to variations in wind stress and ice cover. Six acoustic transceivers moored in an array 200-km across transmitted to one another at four hour intervals. Near the end of February, 1989, a sub-surface temperature maximum at several hundred meters depth disappeared over a suprisingly large area of the central Greenland Sea . While the water column was modified to about 1000 m depth over much of the gyre, the surface remained colder than the deeper water, contrary to what might be expected from simple models of convective renewal.

Worcester, PF, Cornuelle BD, Dzieciuch MA, Munk WH, Howe BM, Mercer JA, Spindel RC, Colosi JA, Metzger K, Birdsall TG, Baggeroer AB.  1999.  A test of basin-scale acoustic thermometry using a large-aperture vertical array at 3250-km range in the eastern North Pacific Ocean. Journal of the Acoustical Society of America. 105:3185-3201.   10.1121/1.424649   AbstractWebsite

Broadband acoustic signals were transmitted during November 1994 from a 75-Hz source suspended near the depth of the sound-channel axis to a 700-m long vertical receiving array approximately 3250 km distant in the eastern North Pacific Ocean. The early part of the arrival pattern consists of raylike wave fronts that are resolvable, identifiable, and stable. The later part of the arrival pattern does not contain identifiable raylike arrivals, due to scattering from internal-wave-induced sound-speed fluctuations. The observed ray travel times differ from ray predictions based on the sound-speed field constructed using nearly concurrent temperature and salinity measurements by more than a priori variability estimates, suggesting that the equation used to compute sound speed requires refinement. The range-averaged ocean sound speed can be determined with an uncertainty of about 0.05 m/s from the observed ray travel times together with the time at which the near-axial acoustic reception ends, used as a surrogate for the group delay of adiabatic mode 1. The change in temperature over six days can be estimated with an uncertainty of about 0.006 degrees C. The sensitivity of the travel times to ocean variability is concentrated near the ocean surface and at the corresponding conjugate depths, because all of the resolved ray arrivals have upper turning depths within a few hundred meters of the surface. (C) 1999 Acoustical Society of America. [S0001-4966(99)04506-3].

Worcester, PF, Cornuelle BD, Hildebrand JA, Hodgkiss WS, Duda TF, Boyd J, Howe BM, Mercer JA, Spindel RC.  1994.  A Comparison of Measured and Predicted Broad-Band Acoustic Arrival Patterns in Travel Time-Depth Coordinates at 1000-Km Range. Journal of the Acoustical Society of America. 95:3118-3128.   10.1121/1.409977   AbstractWebsite

Broadband acoustic signals were transmitted from a moored 250-Hz source to a 3-km-long vertical line array of hydrophones 1000 km distant in the eastern North Pacific Ocean during July 1989. The sound-speed field along the great circle path connecting the source and receiver was measured directly by nearly 300 expendable bathythermograph (XBT), conductivity-temperature-depth (CTD), and air-launched expendable bathythermograph (AXBT) casts while the transmissions were in progress. This experiment is unique in combining a vertical receiving array that extends over much of the water column, extensive concurrent environmental measurements, and broadband signals designed to measure acoustic travel times with 1-ms precision. The time-mean travel times of the early raylike arrivals, which are evident as wave fronts sweeping across the receiving array, and the time-mean of the times at which the acoustic reception ends (the final cutoffs) for hydrophones near the sound channel axis, are consistent with ray predictions based on the direct measurements of temperature and salinity, within measurement uncertainty. The comparisons show that subinertial oceanic variability with horizontal wavelengths shorter than 50 km, which is not resolved by the direct measurements, significantly (25 ms peak-to-peak) affects the time-mean ray travel times. The final cutoffs occur significantly later than predicted using ray theory for hydrophones more than 100-200 m off the sound channel axis. Nongeometric effects, such as diffraction at caustics, partially account for this observation.

Worcester, P, Dushaw BD, Andrew RK, Howe BM, Mercer JA, Spindel RC, Cornuelle B, Dzieciuch M, Birdsall TG, Metzger K, Menemenlis D.  2008.  A decade of acoustic thermometry in the North Pacific Ocean: Using long-range acoustic travel times to test gyre-scale temperature variability derived from other observations and ocean models. Journal of the Acoustical Society of America. 123 AbstractWebsite

Large-scale, range- and depth-averaged temperatures in the North Pacific Ocean were measured by long-range acoustic transmissions over the decade 1996-2006. Acoustic sources off central California and north of Kauai transmitted to receivers throughout the North Pacific. Even though acoustic travel times are spatially integrating, suppressing mesoscale variability and providing a precise measure of large-scale temperature, the travel times sometimes vary significantly on time scales of only a few weeks. The interannual variability is large, with no consistent warming or cooling trends. Comparison of the measured travel times with travel times derived from (i) the World Ocean Atlas 2005 (WOA05), (ii) an upper ocean temperature estimate derived from satellite altimetry and in situ profiles, (iii) an analysis provided by the Estimating the Circulation and Climate of the Ocean (ECCO) project, and (iv) simulation results from a high-resolution configuration of the Parallel Ocean Program (POP) show similarities, but also reveal substantial differences. The differences suggest that the data can provide significant additional constraints for numerical ocean simulations. The acoustic data show that WOA05 is a much better estimate of the time-mean hydrography than either the ECCO or POP estimates and provide significantly better time resolution for large-scale ocean variability than can be derived from satellite altimetry and in situ profiles.

Worcester, P, Cornuelle B.  1982.  Ocean acoustic tomography: Currents. Current Measurement, Proceedings of the 1982 IEEE Second Working Conference on. 2:131-135., Hilton Head Island, South CArolina   10.1109/ccm.1982.1158437   Abstract

Synoptic maps of the geostrophic current structure of the mesoscale field can be constructed from the three-dimensional density field provided by ocean acoustic tomography with unidirectional acoustic transmissions. Reciprocal acoustic transmissions can extend the technique by permitting one to directly measure the current field, including the barotropic component. A preliminary reciprocal acoustic transmission experiment at long range (300 km) and low frequency (400 Hz) is planned for autumn 1982.

Worcester, PF, Cornuelle BD, Spindel RC.  1991.  A Review of Ocean Acoustic Tomography - 1987-1990. Reviews of Geophysics. 29:557-570. AbstractWebsite

Research in ocean acoustic tomography during the last quadrennium has resulted in substantial progress in understanding the capabilities and limitations of the technique. Theoretical studies and numerical simulations have led to greater understanding of the oceanographic information available in a vertical slice from acoustic transmissions between a single pair of instruments, of the horizontal geometries required to map the ocean mesoscale field with specified precision, and of the properties of tomographic reconstructions of the two-dimensional vector field of current. Simultaneously, the instrumentation used in tomographic experiments has been significantly improved, increasing the precision of the measurements and making gyre and basin scale experiments feasible between moored instruments. Experimental efforts to test the accuracy with which the ocean temperature and current fields can be measured acoustically have now demonstrated that tomographic techniques provide measurements with oceanographically useful precision up to ranges of about 1000 km. Such demonstrations are difficult due to the incompatibility between point measurements and the spatial averages provided by tomographic techniques. The experiments have also yielded significant information on the character of acoustic propagation at long range in the ocean. Experimental precision is now adequate to distinguish between competing algorithms for sound speed as a function of temperature, salinity, and depth. Finally, and most importantly, emphasis has shifted to use of the technique for studying the ocean, rather than on understanding the capabilities and limitations of the technique. Two major experiments, the Greenland Sea Tomography Experiment and the Gulf Stream Extension Tomography Experiment, both conducted during 1988-89, were devoted to improving our understanding of ocean dynamics, although results are not yet available. There is increased emphasis on exploiting the integrating nature of acoustic transmissions to study gyre and global scale temperature variability, phenomena difficult to study in any other way.