Publications

Export 21 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R [S] T U V W X Y Z   [Show ALL]
S
Sabra, KG, Cornuelle B, Kuperman WA.  2016.  Sensing deep-ocean temperatures. Physics Today. 69:32-38. AbstractWebsite

Though not yet widely implemented, the technique of monitoring the ocean's warming via changes in the speed of sound through the water is a powerful complement to the more common tools available: free-floating thermometers and altimetry satellites.

Sagen, H, Worcester PF, Dzieciuch MA, Geyer F, Sandven S, Babiker M, Beszczynska-Moller A, Dushaw BD, Cornuelle B.  2017.  Resolution, identification, and stability of broadband acoustic arrivals in Fram Strait. Journal of the Acoustical Society of America. 141:2055-2068.   10.1121/1.4978780   AbstractWebsite

An ocean acoustic tomography system consisting of three moorings with low frequency, broad-band transceivers and a moored receiver located approximately in the center of the triangle formed by the transceivers was installed in the central, deep-water part of Fram Strait during 2010-2012. Comparisons of the acoustic receptions with predictions based on hydrographic sections show that the oceanographic conditions in Fram Strait result in complex arrival patterns in which it is difficult to resolve and identify individual arrivals. In addition, the early arrivals are unstable, with the arrival structures changing significantly over time. The stability parameter a suggests that the instability is likely not due to small-scale variability, but rather points toward strong mesoscale variability in the presence of a relatively weak sound channel as being largely responsible. The estimator-correlator [Dzieciuch, J. Acoust. Soc. Am. 136, 2512-2522 (2014)] is shown to provide an objective formalism for generating travel-time series given the complex propagation conditions. Because travel times obtained from the estimator-correlator are not associated with resolved, identified ray arrivals, inverse methods are needed that do not use sampling kernels constructed from geometric ray paths. One possible approach would be to use travel-time sensitivity kernels constructed for the estimator-correlator outputs. (C) 2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license.

Sarkar, J, Marandet C, Roux P, Walker S, Cornuelle BD, Kuperman WA.  2012.  Sensitivity kernel for surface scattering in a waveguide. Journal of the Acoustical Society of America. 131:111-118.   10.1121/1.3665999   AbstractWebsite

Using the Born approximation, a linearized sensitivity kernel is derived to describe the relationship between a local change at the free surface and its effect on the acoustic propagation in the water column. The structure of the surface scattering kernel is investigated numerically and experimentally for the case of a waveguide at the ultrasonic scale. To better demonstrate the sensitivity of the multipath propagation to the introduction of a localized perturbation at the air-water interface, the kernel is formulated both in terms of point-to-point and beam-to-beam representations. Agreement between theory and experiment suggests applications to sensitivity analysis of the wavefield for sea surface perturbations. (C) 2012 Acoustical Society of America. [DOI: 10.1121/1.3665999]

Sarkar, J, Cornuelle BD, Kuperman WA.  2011.  Information and linearity of time-domain complex demodulated amplitude and phase data in shallow water. Journal of the Acoustical Society of America. 130:1242-1252.   10.1121/1.3613709   AbstractWebsite

Wave-theoretic ocean acoustic propagation modeling is used to derive the sensitivity of pressure, and complex demodulated amplitude and phase, at a receiver to the sound speed of the medium using the Born-Frechet derivative. Although the procedure can be applied for pressure as a function of frequency instead of time, the time domain has advantages in practical problems, as linearity and signal-to-noise are more easily assigned in the time domain. The linearity and information content of these sensitivity kernels is explored for an example of a 3-4 kHz broadband pulse transmission in a 1 km shallow water Pekeris waveguide. Full-wave observations (pressure as a function of time) are seen to be too nonlinear for use in most practical cases, whereas envelope and phase data have a wider range of validity and provide complementary information. These results are used in simulated inversions with a more realistic sound speed profile, comparing the performance of amplitude and phase observations. (C) 2011 Acoustical Society of America. [DOI: 10.1121/1.3613709]

Schneider, N, Cornuelle BD.  2005.  The forcing of the Pacific decadal oscillation. Journal of Climate. 18:4355-4373.   10.1175/jcli3527.1   AbstractWebsite

The Pacific decadal oscillation (PDO), defined as the leading empirical orthogonal function of North Pacific sea surface temperature anomalies, is a widely used index for decadal variability. It is shown that the PDO can be recovered from a reconstruction of North Pacific sea surface temperature anomalies based on a first-order autoregressive model and forcing by variability of the Aleutian low, El Nino-Southern Oscillation (ENSO), and oceanic zonal advection anomalies in the Kuroshio-Oyashio Extension. The latter results from oceanic Rossby waves that are forced by North Pacific Ekman pumping. The SST response patterns to these processes are not orthogonal, and they determine the spatial characteristics of the PDO. The importance of the different forcing, processes is frequency dependent. At interannual time scales, forcing from ENSO and the Aleutian low determines the response in equal parts. At decadal time scales, zonal advection in the Kuroshio-Oyashio Extension, ENSO, and anomalies of the Aleutian low each account for similar amounts of the PDO variance. These, results support the hypothesis that the PDO is not a dynamical mode, but arises from the superposition of sea surface temperature fluctuations with different dynamical origins.

Schonau, MC, Rudnick DL, Cerovecki I, Gopalakrishnan G, Cornuelle BD, McClean JL, Qiu B.  2015.  The Mindanao Current mean structure and connectivity. Oceanography. 28:34-45.   10.5670/oceanog.2015.79   AbstractWebsite

The Mindanao Current (MC), a low-latitude western boundary current in the Pacific Ocean, plays an important role in heat and freshwater transport to the western Pacific warm pool and the Indian Ocean. However, there have been relatively few comprehensive studies of the structure and variability of the MC and its connectivity to regional circulation. The Origins of the Kuroshio and Mindanao Current (OKMC) initiative combines four years of glider observations of the MC, a historical conductivity-temperature-depth (CTD)/float climatology, and results from a global strongly eddying forward ocean general circulation model simulation and a regional ocean state estimate. The MC is resolved as a strong southward current primarily within the upper 200 m, approaching 1 m s(-1), and extending roughly 300 km offshore of Mindanao. Observations and model simulations show a persistent northward Mindanao Undercurrent (MUC) below the thermocline. The MC transports water masses of North Pacific origin southward, while the MUC carries water with South Pacific characteristics northward. The subthermocline transport of the MC and the MUC is connected to other undercurrents in the Philippine Sea. The variability of this transport is a topic of continuing research.

Send, U, Worcester PF, Cornuelle BD, Tiemann CO, Baschek B.  2002.  Integral measurements of mass transport and heat content in the Strait of Gibraltar from acoustic transmissions. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 49:4069-4095.   10.1016/s0967-0645(02)00143-1   AbstractWebsite

Three 2 kHz acoustic transceivers were deployed on either side of the eastern entrance of the Strait of Gibraltar during April-May 1996 to determine the feasibility of using acoustic methods to make routine, rapidly repeated, horizontally integrated measurements of flow and temperature in straits. Reciprocal transmissions between the transceivers were used to test the feasibility of using traditional ray differential travel times to monitor the component of flow along the acoustic paths. Transmissions directly across the Strait were used to test the feasibility of using horizontal arrival angle fluctuations and acoustic intensity scintillations to monitor the flow perpendicular to the acoustic path. The geometry was selected to provide ray paths that only sample the lower-layer Mediterranean water, so that the feasibility of monitoring the Mediterranean outflow using the various methods could be evaluated. The acoustic scintillation method did not yield useful current estimates, but the experimental parameters were not optimized for this approach. Since the low-frequency variability in log-amplitude was found to be highly correlated at receivers 228 m apart, it is possible that acoustic scintillation measurements using different receiver spacings and more rapid sampling might yield better results. The horizontal deflection method gave encouraging results at the time of neap tides, but less so during spring tides. For this approach, both theoretical estimates and measured phase differences between the horizontally separated receivers suggest that internal-wave-induced horizontal arrival angle fluctuations may fundamentally limit the precision with which arrival angles can be measured. Further work is needed to determine if a smaller horizontal spacing and higher signal-to-noise ratios would yield better results. Reciprocal travel time measurements diagonally across the Strait performed the best of the three methods, giving absolute flow estimates consistent with those derived from current-meter data. The fractional uncertainty variance for the lower layer tidal transport from a single tomographic path was estimated to be 0.017 (i.e. 98% of the a priori tidal transport variance was resolved). The spatial scales of the sub-tidal flow are thought to be significantly shorter than those of the tidal flow, however, which means that a more elaborate monitoring network is required to achieve the same performance for sub-tidal variability. Finally, sum travel times from the reciprocal transmissions were found to provide good measurements of the temperature and heat content in the lower layer. (C) 2002 Published by Elsevier Science Ltd.

Skarsoulis, EK, Cornuelle BD, Dzieciuch MA.  2013.  Long-range asymptotic behavior of vertical travel-time sensitivity kernels. Journal of the Acoustical Society of America. 134:3201-3210.   10.1121/1.4818785   AbstractWebsite

Vertical travel-time sensitivity kernels (VTSKs) describe the effect of horizontally uniform sound-speed changes on travel times in range-independent ocean environments. Wave-theoretic VTSKs can be obtained either analytically, through perturbation of the normal-mode representation, or numerically, as horizontal marginals of the corresponding two-dimensional and three-dimensional travel-time sensitivity kernels. In previous works, it has been observed that wave-theoretic finite-frequency VTSKs approach the corresponding ray-theoretic sensitivity kernels as the propagation range increases. The present work is an attempt to explain this behavior. A stationary-phase approach is used to obtain a long-range asymptotic expression for the wave-theoretic VTSKs. The resulting asymptotic VTSKs are very close to the corresponding ray-theoretic ones. The smoothness condition, required for the stationary-phase approximation to hold, is used to obtain an estimate for the range beyond which the asymptotic behavior sets in. (C) 2013 Acoustical Society of America.

Skarsoulis, EK, Cornuelle BD, Dzieciuch MA.  2011.  Second-Order Sensitivity of Acoustic Travel Times to Sound Speed Perturbations. Acta Acustica United with Acustica. 97:533-543.   10.3813/aaa.918434   AbstractWebsite

The second-order sensitivity of finite-frequency acoustic travel times to sound speed perturbations in range-independent environments is studied. Using the notion of peak arrivals and the normal-mode representation of the Green's function first- and second-order perturbation expressions are derived for the travel times in terms of the underlying perturbations in the Green's function and finally in the sound speed profile. The resulting theoretical expressions are numerically validated. Assuming small and local perturbations the non-linear effects appear to be strongest for sound speed perturbations taking place close to the lower turning depths of the corresponding eigenrays. At the upper turning depths - in the case of temperate propagation conditions - the effects are much weaker due to the larger sound speed gradients. The magnitude of the second-order sensitivity of travel times relative to the first-order sensitivity can be used to obtain an estimate for the limits of linearity.

Skarsoulis, EK, Cornuelle BD, Dzieciuch MA.  2009.  Travel-time sensitivity kernels in long-range propagation. Journal of the Acoustical Society of America. 126:2223-2233.   10.1121/1.3224835   AbstractWebsite

Wave-theoretic travel-time sensitivity kernels (TSKs) are calculated in two-dimensional (2D) and three-dimensional (3D) environments and their behavior with increasing propagation range is studied and compared to that of ray-theoretic TSKs and corresponding Fresnel-volumes. The differences between the 2D and 3D TSKs average out when horizontal or cross-range marginals are considered, which indicates that they are not important in the case of range-independent sound-speed perturbations or perturbations of large scale compared to the lateral TSK extent. With increasing range, the wave-theoretic TSKs expand in the horizontal cross-range direction, their cross-range extent being comparable to that of the corresponding free-space Fresnel zone, whereas they remain bounded in the vertical. Vertical travel-time sensitivity kernels (VTSKs)-one-dimensional kernels describing the effect of horizontally uniform sound-speed changes on travel-times-are calculated analytically using a perturbation approach, and also numerically, as horizontal marginals of the corresponding TSKs. Good agreement between analytical and numerical VTSKs, as well as between 2D and 3D VTSKs, is found. As an alternative method to obtain wave-theoretic sensitivity kernels, the parabolic approximation is used; the resulting TSKs and VTSKs are in good agreement with normal-mode results. With increasing range, the wave-theoretic VTSKs approach the corresponding ray-theoretic sensitivity kernels. (C) 2009 Acoustical Society of America. [DOI: 10.1121/1.3224835]

Skarsoulis, EK, Cornuelle BD.  2004.  Travel-time sensitivity kernels in ocean acoustic tomography. Journal of the Acoustical Society of America. 116:227-238.   10.1121/1.1753292   AbstractWebsite

Wave-theoretic ocean acoustic propagation modeling is combined with the peak arrival approach for tomographic travel-time observables to derive the sensitivity kernel of travel times with respect to sound-speed variations. This is the Born-Frechet kernel relating the three-dimensional spatial distribution of sound-speed variations with the induced travel-time variations. The derivation is based on the first Born approximation of the Green's function. The application of the travel-time sensitivity kernel to an ocean acoustic waveguide gives a picture close to the ray-theoretic one in the case of high frequencies. However, in the low-frequency case, of interest in ocean acoustic tomography, for example, there are significant deviations. Low-frequency travel times are sensitive to sound-speed changes in Fresnel-zone-scale areas surrounding the eigenrays, but not on the eigenrays themselves, where the sensitivity is zero. Further, there are areas of positive sensitivity, where, e.g., a sound-speed increase results in an increase of arrival times, i.e., a further delay of arrivals, in contrast with the common expectation. These findings are confirmed by forward acoustic predictions from a coupled-mode code. (C) 2004 Acoustical Society of America.

Sohn, RA, Webb SC, Hildebrand JA, Cornuelle BD.  1997.  Three-dimensional tomographic velocity structure of upper crust, CoAxial segment, Juan de Fuca ridge: Implications for on-axis evolution and hydrothermal circulation. Journal of Geophysical Research-Solid Earth. 102:17679-17695.   10.1029/97jb00592   AbstractWebsite

Three-dimensional models of compressional velocity and azimuthal anisotropy from tomographic inversions using 23,564 ocean bottom seismometer P wave arrivals define systematic lateral variations in seismic structure of the CoAxial segment of the Juan de Fuca Ridge (JdFR). Over much of the segment the across-axis structure is roughly axisymmetric, characterized by a progressive increase in dike velocities moving away from the ridge axis. This trend is most apparent in the basal dikes, where on-axis velocities are about 800 m/s slower than those measured elsewhere within the rift valley. The on-axis sheeted dikes also exhibit ridge-oriented azimuthal anisotropy, with a peak-to-peak amplitude of about 600 m/s. Outboard of the rift valley, beneath ridge flanks with fault scarps, velocities in the upper 1500 m of crust are reduced. The maximum amplitude of this anomaly is about 700 m/s, located near the top of the sheeted dikes. Variations in the three-dimensional velocity model are believed to reflect changes in crustal porosity, from which we infer an axisymmetric porosity model for seismic layer 2 of the CoAxial segment. As the crust ages, the evolution of layer 2 porosity could occur in the following way: (1) the porosity of zero-age, on-axis dikes is set at formation by the contraction of molten material, (2) hydrothermal alteration fills pore spaces as the dikes move away from the center of the axial valley, and (3) normal faulting on the ridge flank scarps opens fractures and increases porosity of the upper dikes as they move off-axis. At the north end of the segment, dike velocities are several hundred meters per second slower, on average, and the across-axis structure is lost. The transition from a coherent, aligned seismic structure to a less distinct pattern with reduced velocities may represent a shift from magmatic to amagmatic extension moving away from the Cobb hotspot on the ridge axis. The porosity structure we have derived for the CoAxial segment suggests an alternative to the usual hydrothermal circulation model of cross-axis convection cells. A circulation model with along-axis convection cells located entirely within the axial valley appears to be more compatible with our data.

Song, H, Miller AJ, Cornuelle BD, Di Lorenzo E.  2011.  Changes in upwelling and its water sources in the California Current System driven by different wind forcing. Dynamics of Atmospheres and Oceans. 52:170-191.   10.1016/j.dynatmoce.2011.03.001   AbstractWebsite

In the California Current System (CCS), upwelling is one of the most important features that enrich the coastal ecosystem. It is highly dependent on both wind stress and wind stress curl, because they contribute to the upwelling system through Ekman transport away from the coast and Ekman pumping as a result of the surface divergence, respectively. Various wind stress products are known to contain sharply different patterns of wind stress, and well-resolved wind forcing products have been shown to drive stronger upwelling due to their better-resolved wind stress curl in previous studies. However, sensitivities of upwelling to changes in wind stress patterns, and each of their control to the source waters and paths of the upwelling cells, are not yet well known for the CCS. Here we study these effects using the Regional Ocean Modeling System (ROMS) and its adjoint model under idealized wind stress forcing patterns representing three widely-used products in addition to a constant wind stress field (no curl): the NCEP/NCAR Reanalysis, the QuikSCAT satellite observations, and the Regional Spectral Model (RSM) downscaling. Changes in currents and isopycnal patterns during the upwelling season are first studied in ROMS under the four different wind stress fields. The model simulations show that the locations of the core of the equatorward flow and the gradient of the cross-shore isopycnals are controlled by the wind stress curl field. The core of the equatorward flow is found under negative wind stress curl, and a deeper upwelling cell is found as the gradient from positive and negative wind stress curl increases. Source waters for the upwelling in each of the four wind stress patterns are investigated using the ROMS adjoint model. The simulations follow a passive tracer backward in time and track the source waters for upwelling in two key areas of interest: inshore and offshore of the Point Sur region of California. The upwelling source waters depend strongly on the depth of the upwelling cell and the alongshore current location. We further relate these results to recent studies of the observed trends in upwelling favorable winds and consequent wind stress curl changes in the CCS. (C) 2011 Elsevier B.V. All rights reserved.

Song, H, Hoteit I, Cornuelle BD, Subramanian AC.  2010.  An Adaptive Approach to Mitigate Background Covariance Limitations in the Ensemble Kalman Filter. Monthly Weather Review. 138:2825-2845.   10.1175/2010mwr2871.1   AbstractWebsite

A new approach is proposed to address the background covariance limitations arising from undersampled ensembles and unaccounted model errors in the ensemble Kalman filter (EnKF). The method enhances the representativeness of the EnKF ensemble by augmenting it with new members chosen adaptively to add missing information that prevents the EnKF fromfully fitting the data to the ensemble. The vectors to be added are obtained by back projecting the residuals of the observation misfits from the EnKF analysis step onto the state space. The back projection is done using an optimal interpolation (OI) scheme based on an estimated covariance of the subspace missing from the ensemble. In the experiments reported here, the OI uses a stationary background covariance matrix, as in the hybrid EnKF-three-dimensional variational data assimilation (3DVAR) approach, but the resulting correction is included as a new ensemble member instead of being added to all existing ensemble members. The adaptive approach is tested with the Lorenz-96 model. The hybrid EnKF-3DVAR is used as a benchmark to evaluate the performance of the adaptive approach. Assimilation experiments suggest that the new adaptive scheme significantly improves the EnKF behavior when it suffers from small size ensembles and neglected model errors. It was further found to be competitive with the hybrid EnKF-3DVAR approach, depending on ensemble size and data coverage.

Song, HJ, Hoteit I, Cornuelle BD, Luo XD, Subramanian AC.  2013.  An adjoint-based adaptive ensemble Kalman filter. Monthly Weather Review. 141:3343-3359. AbstractWebsite

A new hybrid ensemble Kalman filter/four-dimensional variational data assimilation (EnKF/4D-VAR) approach is introduced to mitigate background covariance limitations in the EnKF. The work is based on the adaptive EnKF (AEnKF) method, which bears a strong resemblance to the hybrid EnKF/three-dimensional variational data assimilation (3D-VAR) method. In the AEnKF, the representativeness of the EnKF ensemble is regularly enhanced with new members generated after back projection of the EnKF analysis residuals to state space using a 3D-VAR [or optimal interpolation (OI)] scheme with a preselected background covariance matrix. The idea here is to reformulate the transformation of the residuals as a 4D-VAR problem, constraining the new member with model dynamics and the previous observations. This should provide more information for the estimation of the new member and reduce dependence of the AEnKF on the assumed stationary background covariance matrix. This is done by integrating the analysis residuals backward in time with the adjoint model. Numerical experiments are performed with the Lorenz-96 model under different scenarios to test the new approach and to evaluate its performance with respect to the EnKF and the hybrid EnKF/3D-VAR. The new method leads to the least root-mean-square estimation errors as long as the linear assumption guaranteeing the stability of the adjoint model holds. It is also found to be less sensitive to choices of the assimilation system inputs and parameters.

Subramanian, AC, Hoteit I, Cornuelle B, Miller AJ, Song H.  2012.  Linear versus Nonlinear Filtering with Scale-Selective Corrections for Balanced Dynamics in a Simple Atmospheric Model. Journal of the Atmospheric Sciences. 69:3405-3419.   10.1175/JAS-D-11-0332.1   AbstractWebsite

This paper investigates the role of the linear analysis step of the ensemble Kalman filters (EnKF) in disrupting the balanced dynamics in a simple atmospheric model and compares it to a fully nonlinear particle-based filter (PF). The filters have a very similar forecast step but the analysis step of the PF solves the full Bayesian filtering problem while the EnKF analysis only applies to Gaussian distributions. The EnKF is compared to two flavors of the particle filter with different sampling strategies, the sequential importance resampling filter (SIRF) and the sequential kernel resampling filter (SKRF). The model admits a chaotic vortical mode coupled to a comparatively fast gravity wave mode. It can also be configured either to evolve on a so-called slow manifold, where the fast motion is suppressed, or such that the fast-varying variables are diagnosed from the slow-varying variables as slaved modes. Identical twin experiments show that EnKF and PF capture the variables on the slow manifold well as the dynamics is very stable. PFs, especially the SKRF, capture slaved modes better than the EnKF, implying that a full Bayesian analysis estimates the nonlinear model variables better. The PFs perform significantly better in the fully coupled nonlinear model where fast and slow variables modulate each other. This suggests that the analysis step in the PFs maintains the balance in both variables much better than the EnKF. It is also shown that increasing the ensemble size generally improves the performance of the PFs but has less impact on the EnKF after a sufficient number of members have been used.

Subramanian, AC, Balmaseda MA, Centurioni L, Chattopadhyay R, Cornuelle BD, DeMott C, Flatau M, Fujii Y, Giglio D, Gille ST, Hamill TM, Hendon H, Hoteit I, Kumar A, Lee JH, Lucas AJ, Mahadevan A, Matsueda M, Nam S, Paturi S, Penny SG, Rydbeck A, Sun R, Takaya Y, Tandon A, Todd RE, Vitart F, Yuan DL, Zhang CD.  2019.  Ocean observations to improve our understanding, modeling, and forecasting of subseasonal-to-seasonal variability. Frontiers in Marine Science. 6   10.3389/fmars.2019.00427   AbstractWebsite

Subseasonal-to-seasonal (S2S) forecasts have the potential to provide advance information about weather and climate events. The high heat capacity of water means that the subsurface ocean stores and re-releases heat (and other properties) and is an important source of information for S2S forecasts. However, the subsurface ocean is challenging to observe, because it cannot be measured by satellite. Subsurface ocean observing systems relevant for understanding, modeling, and forecasting on S2S timescales will continue to evolve with the improvement in technological capabilities. The community must focus on designing and implementing low-cost, high-value surface and subsurface ocean observations, and developing forecasting system capable of extracting their observation potential in forecast applications. S2S forecasts will benefit significantly from higher spatio-temporal resolution data in regions that are sources of predictability on these timescales (coastal, tropical, and polar regions). While ENSO has been a driving force for the design of the current observing system, the subseasonal time scales present new observational requirements. Advanced observation technologies such as autonomous surface and subsurface profiling devices as well as satellites that observe the ocean-atmosphere interface simultaneously can lead to breakthroughs in coupled data assimilation (CDA) and coupled initialization for S2S forecasts.

Subramanian, AC, Miller AJ, Cornuelle BD, Di Lorenzo E, Weller RA, Straneo F.  2013.  A data assimilative perspective of oceanic mesoscale eddy evolution during VOCALS-REx. Atmospheric Chemistry and Physics. 13:3329-3344.   10.5194/acp-13-3329-2013   AbstractWebsite

Oceanic observations collected during the VOCALS-REx cruise time period, 1-30 November 2008, are assimilated into a regional ocean model (ROMS) using 4DVAR and then analyzed for their dynamics. Nonlinearities in the system prevent a complete 30-day fit, so two 15-day fits for 1-15 November and 16-30 November are executed using the available observations of hydrographic temperature and salinity, along with satellite fields of SST and sea-level height anomaly. The fits converge and reduce the cost function significantly, and the results indicated that ROMS is able to successfully reproduce both large-scale and smaller-scale features of the flows observed during the VOCALS-REx cruise. Particular attention is focused on an intensively studied eddy at 76 degrees W, 19 degrees S. The ROMS fits capture this eddy as an isolated rotating 3-D vortex with a strong subsurface signature in velocity, temperature and anomalously low salinity. The eddy has an average temperature anomaly of approximately -0.5 degrees C over a depth range from 50-600 m and features a cold anomaly of approximately -1 degrees C near 150 m depth. The eddy moves northwestward and elongates during the second 15-day fit. It exhibits a strong signature in the Okubo-Weiss parameter, which indicates significant non-linearity in its evolution. The heat balance for the period of the cruise from the ocean state estimate reveals that the horizontal advection and the vertical mixing processes are the dominant terms that balance the temperature tendency of the upper layer of the ocean locally in time and space. Areal averages around the eddies, for a 15-day period during the cruise, suggest that vertical mixing processes generally balance the surface heating. Although, this indicates only a small role for lateral advective processes in this region during this period, this quasi-instantaneous heat budget analysis cannot be extended to interpret the seasonal or long-term upper ocean heat budget in this region.

Sutton, PJ, Morawitz WML, Worcester PF, Cornuelle BD.  1997.  Temperature evolution of the upper ocean in the Greenland Sea January to march 1989. Journal of Geophysical Research-Oceans. 102:27861-27874.   10.1029/97jc02439   AbstractWebsite

Tomographic data obtained during early 1989 in the Greenland Sea have been analyzed at 4-8 hour resolution to give the range-averaged vertical temperature evolution in the upper 500 m for a 106 km path. The tomographic inversions used both ray travel time data and normal mode group velocity data in order to maximize near-surface resolution. Two major events are apparent in the results. The first is the warming of a cold (-1.9 degrees C) 100 m thick surface layer, and the second, 10 days later, is the cooling of a relatively warm (-0.9 degrees C) subsurface layer between 300 m and 500 m depth. This warm subsurface layer is a critical source of salinity and buoyancy for deep convection. The surface layer warming is consistent with a mixed layer deepening over a portion of the path, bringing up water from below. Special Sensor Microwave Imager (SSM/I) ice data indicate that the local ice field disappears 3-4 days after the surface warming. The cooling of the warm 300 m to 500 m layer is also consistent with a vertical process. There is no ice cover at this time, and so surface heat fluxes are large. A northerly wind event occurs at the onset of the cooling of the 300-500 m layer, suggesting that wind-induced mixing may have played a role in initiating the process. There is evidence of southward flow advecting warm water into the area both before and after the two events studied in detail here.

Sutton, PJ, Worcester PF, Masters G, Cornuelle BD, Lynch JF.  1993.  Ocean Mixed Layers and Acoustic Pulse-Propagation in the Greenland Sea. Journal of the Acoustical Society of America. 94:1517-1526.   10.1121/1.408128   AbstractWebsite

A simple one-dimensional ocean mixed layer model is used to study the effect of the transition between summer and winter conditions in the Greenland Sea on range-independent acoustic propagation. Acoustic normal modes propagated through the evolving sound-speed profile simulate broadband acoustic receptions from the Greenland Sea Tomography Experiment. The resulting changes in arrival structure and travel time are compared with data recorded between two of the tomographic moorings. The starting state for the model is the average of measured summer temperature and salinity profiles. At each time step the surface layer is modified by the removal of heat (modeling heat loss to the atmosphere) and the removal of fresh water (modeling evaporation minus precipitation). When necessary, static stability is maintained by mixing the surface layer into deeper layers. The acoustic normal modes exhibit large changes in behavior as the profile changes. In both summer (seasonal thermocline) and winter (adiabatic sound-speed profile) individual modes show minimal frequency dispersion. Intermediate profiles with a shallow surface mixed layer give highly dispersive modes, delaying the final acoustic energy cutoff by several hundred milliseconds relative to the summer and winter cases. This is the largest travel time signal observed in the data. The largest peak in the late continuous acoustic energy is due to minimally dispersed modes and corresponds to ray arrivals with near horizontal receiver angles. The amplitude of the arrival is low when significant dispersion is present.

Sutton, P, Morawitz WML, Cornuelle BD, Masters G, Worcester PF.  1994.  Incorporation of Acoustic Normal-Mode Data Into Tomographic Inversions in the Greenland Sea. Journal of Geophysical Research-Oceans. 99:12487-12502.   10.1029/94jc00210   AbstractWebsite

Acoustic normal mode group velocity data are extracted from tomographic receptions in the Greenland Sea using a combination of spatial filtering with data from a six-element hydrophone array and variable time windowing. The mode group velocity data, together with ray travel time data, are used in inversions to obtain the range average sound speed profile. The modal data significantly improve near-surface resolution, which is where the largest oceanographic signals occur. Inverse results using only acoustic data are consistent with point measurements, a Seasoar section, and sparse conductivity-temperature-depth data.