Publications

Export 10 results:
Sort by: [ Author  (Desc)] Title Type Year
A B C D E F G H I J [K] L M N O P Q R S T U V W X Y Z   [Show ALL]
K
Kohl, A, Stammer D, Cornuelle B.  2007.  Interannual to decadal changes in the ECCO global synthesis. Journal of Physical Oceanography. 37:313-337.   10.1175/jpo3014.1   AbstractWebsite

An estimate of the time-varying global ocean circulation for the period 1992 - 2002 was obtained by combining most of the World Ocean Circulation Experiment ( WOCE) ocean datasets with a general circulation model on a 1 horizontal grid. The estimate exactly satisfies the model equations without artificial sources or sinks of momentum, heat, and freshwater. To bring the model into agreement with observations, its initial temperature and salinity conditions were permitted to change, as were the time-dependent surface fluxes of momentum, heat, and freshwater. The estimation of these "control variables" is largely consistent with accepted uncertainties in the hydrographic climatology and meteorological analyses. The estimated time-mean horizontal transports of volume, heat, and freshwater, which were largely underestimated in the previous 2 optimization performed by Stammer et al., have converged with time-independent estimates from box inversions over most parts of the World Ocean. Trends in the model's heat content are 7% larger than those reported by Levitus and correspond to a global net heat uptake of about 1.1 W m(-2) over the model domain. The associated model trend in sea surface height over the estimation period resembles the observations from Ocean Topography Experiment ( TOPEX)/Poseidon over most of the global ocean. Sea surface height changes in the model are primarily steric but show contributions from mass redistributions from the subpolar North Atlantic Ocean and the Southern Ocean to the subtropical Pacific Ocean gyres. Steric contributions are primarily temperature based but are partly compensated by salt variation. However, the North Atlantic and the Southern Ocean reveal a clear contribution of salt to large-scale sea level variations.

Kim, SY, Terrill EJ, Cornuelle BD, Jones B, Washburn L, Moline MA, Paduan JD, Garfield N, Largier JL, Crawford G, Kosro PM.  2011.  Mapping the U.S. West Coast surface circulation: A multiyear analysis of high-frequency radar observations. Journal of Geophysical Research-Oceans. 116   10.1029/2010jc006669   AbstractWebsite

The nearly completed U. S. West Coast (USWC) high-frequency radar (HFR) network provides an unprecedented capability to monitor and understand coastal ocean dynamics and phenomenology through hourly surface current measurements at up to 1 km resolution. The dynamics of the surface currents off the USWC are governed by tides, winds, Coriolis force, low-frequency pressure gradients (less than 0.4 cycles per day (cpd)), and nonlinear interactions of those forces. Alongshore surface currents show poleward propagating signals with phase speeds of O(10) and O(100 to 300) km day(-1) and time scales of 2 to 3 weeks. The signals with slow phase speed are only observed in southern California. It is hypothesized that they are scattered and reflected by shoreline curvature and bathymetry change and do not penetrate north of Point Conception. The seasonal transition of alongshore surface circulation forced by upwelling-favorable winds and their relaxation is captured in fine detail. Submesoscale eddies, identified using flow geometry, have Rossby numbers of 0.1 to 3, diameters in the range of 10 to 60 km, and persistence for 2 to 12 days. The HFR surface currents resolve coastal surface ocean variability continuously across scales from submesoscale to mesoscale (O(1) km to O(1000) km). Their spectra decay with k(-2) at high wave number (less than 100 km) in agreement with theoretical submesoscale spectra below the observational limits of present-day satellite altimeters.

Kim, SY, Cornuelle BD, Terrill EJ.  2009.  Anisotropic Response of Surface Currents to the Wind in a Coastal Region. Journal of Physical Oceanography. 39:1512-1533.   10.1175/2009JPO4013.1   Abstract

Analysis of coastal surface currents measured off the coast of San Diego for two years suggests an anisotropic and asymmetric response to the wind, probably as a result of bottom/coastline boundary effects, including pressure gradients. In a linear regression, the statistically estimated anisotropic response explains approximately 20% more surface current variance than an isotropic wind-ocean response model. After steady wind forcing for three days, the isotropic surface current response veers 42 degrees +/- 2 degrees to the right of the wind regardless of wind direction, whereas the anisotropic analysis suggests that the upcoast (onshore) wind stress generates surface currents with 10 degrees +/- 4 degrees (71 degrees +/- 3 degrees) to the right of the wind direction. The anisotropic response thus reflects the dominance of alongshore currents in this coastal region. Both analyses yield wind-driven currents with 3%-5% of the wind speed, as expected. In addition, nonlinear isotropic and anisotropic response functions are considered, and the asymmetric current responses to the wind are examined. These results provide a comprehensive statistical model of the wind-driven currents in the coastal region, which has not been well identified in previous field studies, but is qualitatively consistent with descriptions of the current response in coastal ocean models.

Kim, SY, Terrill E, Cornuelle B.  2007.  Objectively mapping HF radar-derived surface current data using measured and idealized data covariance matrices. Journal of Geophysical Research-Oceans. 112   10.1029/2006jc003756   AbstractWebsite

Surface currents measured by high-frequency radars are objectively mapped using covariance matrices computed from hourly surface current vectors spanning two years. Since retrievals of surface radial velocities are inherently gappy in space and time, the irregular density of surface current data leads to negative eigenvalues in the sample covariance matrix. The number and the magnitude of the negative eigenvalues depend on the degree of data continuity used in the matrix computation. In a region of 90% data coverage, the negative eigenvalues of the sample covariance matrix are small enough to be removed by adding a noise term to the diagonal of the matrix. The mapping is extended to regions of poorer data coverage by applying a smoothed covariance matrix obtained by spatially averaging the sample covariance matrix. This approach estimates a stable covariance matrix of surface currents for regions with the intermittent radar coverage. An additional benefit is the removal of baseline errors that often exist between two radar sites. The covariance matrices and the correlation functions of the surface currents are exponential in space rather than Gaussian, as is often assumed in the objective mapping of oceanographic data sets. Patterns in the decorrelation length scale provide the variabilities of surface currents and the insights on the influence of topographic features (bathymetry and headlands). The objective mapping approach presented herein lends itself to various applications, including the Lagrangian transport estimates, dynamic analysis through divergence and vorticity of current vectors, and statistical models of surface currents.

Kim, SY, Cornuelle BD, Terrill EJ.  2010.  Decomposing observations of high-frequency radar-derived surface currents by their forcing mechanisms: Decomposition techniques and spatial structures of decomposed surface currents. Journal of Geophysical Research-Oceans. 115   10.1029/2010jc006222   AbstractWebsite

Surface current observations from a high-frequency radar network deployed in southern San Diego are decomposed according to their driving forces: pure tides and their neighboring off-band energy, local winds, and low frequency. Several superposed ocean responses are present as a result of the complicated bottom topography and relatively weak winds off southern San Diego, as opposed to coastal regions where circulation can be explained by a dominant forcing mechanism. This necessitates an application of a statistical decomposition approach. Surface currents coherent with pure tides are calculated using harmonic analysis. Locally wind-driven surface currents are estimated by regression of observed winds on observed surface currents. The dewinded and detided surface currents are filtered by weighted least-squares fitting assuming white noise and three colored signal bands: low-frequency band (less than 0.4 cycles per day) and near-tidal peaks at the diurnal (K-1) and semidiurnal (M-2) frequencies. The spatial and temporal variability of each part of the decomposed surface currents is investigated in terms of ocean response to the driving forces. In addition, the spatial correlations of individual components exhibit Gaussian and exponential shapes with varying decorrelation length scales.

Kim, SY, Terrill EJ, Cornuelle BD.  2009.  Assessing Coastal Plumes in a Region of Multiple Discharges: The US-Mexico Border. Environmental Science & Technology. 43:7450-7457.   10.1021/es900775p   AbstractWebsite

The San Diego/Tijuana border region has several environmental challenges with regard to assessing water quality impacts resulting from local coastal ocean discharges for which transport is not hindered by political boundaries. While an understanding of the fate and transport of these discharged plumes has a broad audience, the spatial and temporal scales of the physical processes present numerous challenges in conducting assessment with any fidelity. To address these needs, a data-driven model of the transport of both shoreline and offshore discharges is developed and operated in a hindcast mode for a four-year period to analyze regional connectivity between the discharges and the receiving of waters and the coastline. The plume exposure hindcast model is driven by surface current data generated by a network of high-frequency radars. Observations provided by both boat-based CTD measurements and fixed oceanographic moorings are used with the Roberts-Snyder-Baumgartner model to predict the plume rise height. The surface transport model outputs are compared with shoreline samples of fecal indicator bacteria (FIB), and the skill of the model to assess low water quality is evaluated using receiver operating characteristic (ROC) analysis.

Kim, SY, Cornuelle BD, Terrill EJ, Jones B, Washburn L, Moline MA, Paduan JD, Garfield N, Largier JL, Crawford G, Kosro PM.  2013.  Poleward propagating subinertial alongshore surface currents off the US West Coast. Journal of Geophysical Research-Oceans. 118:6791-6806.   10.1002/jgrc.20400   AbstractWebsite

The network comprising 61 high-frequency radar systems along the U.S. West Coast (USWC) provides a unique, high resolution, and broad scale view of ocean surface circulation. Subinertial alongshore surface currents show poleward propagating signals with phase speeds of O(10) and O(100-300) kmd-1 that are consistent with historical in situ observations off the USWC and that can be possibly interpreted as coastally trapped waves (CTWs). The propagating signals in the slow mode are partly observed in southern California, which may result from scattering and reflection of higher-mode CTWs due to curvature of shoreline and bathymetry near Point Conception, California. On the other hand, considering the order of the phase speed in the slow mode, the poleward propagating signals may be attributed to alongshore advection or pressure-driven flows. A statistical regression of coastal winds at National Data Buoy Center buoys on the observed surface currents partitions locally and remotely wind-forced components, isolates footprints of the equatorward propagating storm events in winter off the USWC, and shows the poleward propagating signals year round.

Kim, SY, Cornuelle BD, Terrill EJ.  2010.  Decomposing observations of high-frequency radar-derived surface currents by their forcing mechanisms: Locally wind-driven surface currents. Journal of Geophysical Research-Oceans. 115   10.1029/2010jc006223   AbstractWebsite

The wind impulse response function and transfer function for high-frequency radar-derived surface currents off southern San Diego are calculated using several local wind observations. The spatial map of the transfer function reflects the influence of the coast on wind-current dynamics. Near the coast (within 20 km from the shoreline), the amplitudes of the transfer function at inertial and diurnal frequencies are reduced due to effects of coastline and bottom bathymetry. Meanwhile, the amplitude of low-frequency currents increases near the coast, which is attributed to the local geostrophic balance between cross-shore pressure gradients against the coast and currents. Locally wind-driven surface currents are estimated from the data-derived response function, and their power spectrum shows a strong diurnal peak superposed on a red spectrum, similar to the spectra of observed winds. Current magnitudes and veering angles to a quasi-steady wind are typically 2-5% of the wind speed and vary 50 degrees-90 degrees to the right of the wind, respectively. A wind skill map is introduced to present the fractional variance of surface currents explained by local winds as a verification tool for wind data quality and relevance. Moreover, the transfer functions in summer and winter are presented to examine the seasonal variation in ocean surface current response to the wind associated with stratification change.

Kim, SY, Terrill EJ, Cornuelle BD.  2008.  Mapping surface currents from HF radar radial velocity measurements using optimal interpolation. Journal of Geophysical Research-Oceans. 113   10.1029/2007jc004244   AbstractWebsite

An optimal interpolation (OI) method to compute surface vector current fields from radial velocity measurements derived from high-frequency (HF) radars is presented. The method assumes a smooth spatial covariance relationship between neighboring vector currents, in contrast to the more commonly used un-weighted least-squares fitting (UWLS) method, which assumes a constant vector velocity within a defined search radius. This OI method can directly compute any quantities linearly related to the radial velocities, such as vector currents and dynamic quantities (divergence and vorticity) as well as the uncertainties of those respective fields. The OI method is found to be more stable than the UWLS method and reduces spurious vector solutions near the baselines between HF radar installations. The OI method produces a covariance of the uncertainty of the estimated vector current fields. Three nondimensional uncertainty indices are introduced to characterize the uncertainty of the vector current at a point, representing an ellipse with directional characteristics. The vector current estimation using the OI method eliminates the need for multiple mapping steps and optimally fills intermittent coverage gaps. The effects of angular interpolation of radial velocities, a commonly used step in the preprocessing of radial velocity data prior to vector current computation in the UWLS method, are presented.

Kim, SY, Cornuelle BD.  2015.  Coastal ocean climatology of temperature and salinity off the Southern California Bight: Seasonal variability, climate index correlation, and linear trend. Progress in Oceanography. 138:136-157.   10.1016/j.pocean.2015.08.001   AbstractWebsite

A coastal ocean climatology of temperature and salinity in the Southern California Bight is estimated from conductivity-temperature-depth (CTD) and bottle sample profiles collected by historical California Cooperative Oceanic Fisheries Investigation (CalCOFI) cruises (1950-2009; quarterly after 1984) off southern California and quarterly/monthly nearshore CTD surveys (within 30 km from the coast except for the surfzone; 1999-2009) off San Diego and Los Angeles. As these fields are sampled regularly in space, but not in time, conventional Fourier analysis may not be possible. The time dependent temperature and salinity fields are modeled as linear combinations of an annual cycle and its five harmonics, as well as three standard climate indices (El Nino-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Pacific Gyre Oscillation (NPGO)), the Scripps Pier temperature time series, and a mean and linear trend without time lags. Since several of the predictor indices are correlated, the indices are successively orthogonalized to eliminate ambiguity in the identification of the contributed variance of each component. Regression coefficients are displayed in both vertical transects and horizontal maps to evaluate (1) whether the temporal and spatial scales of the two data sets of nearshore and offshore observations are consistent and (2) how oceanic variability at a regional scale is related to variability in the nearshore waters. The data-derived climatology can be used to identify anomalous events and atypical behaviors in regional-scale oceanic variability and to provide background ocean estimates for mapping or modeling. (C) 2015 Elsevier Ltd. All rights reserved.