Export 10 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G [H] I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
Haidvogel, DB, Arango H, Budgell WP, Cornuelle BD, Curchitser E, Di Lorenzo E, Fennel K, Geyer WR, Hermann AJ, Lanerolle L, Levin J, McWilliams JC, Miller AJ, Moore AM, Powell TM, Shchepetkin AF, Sherwood CR, Signell RP, Warner JC, Wilkin J.  2008.  Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the Regional Ocean Modeling System. Journal of Computational Physics. 227:3595-3624.   10.1016/   AbstractWebsite

Systematic improvements in algorithmic design of regional ocean circulation models have led to significant enhancement in simulation ability across a wide range of space/time scales and marine system types. As an example, we briefly review the Regional Ocean Modeling System, a member of a general class of three-dimensional, free-surface, terrain-following numerical models. Noteworthy characteristics of the ROMS computational kernel include: consistent temporal averaging of the barotropic mode to guarantee both exact conservation and constancy preservation properties for tracers; redefined barotropic pressure-gradient terms to account for local variations in the density field; vertical interpolation performed using conservative parabolic splines; and higher-order, quasi-monotone advection algorithms. Examples of quantitative skill assessment are shown for a tidally driven estuary, an ice-covered high-latitude sea, a wind- and buoyancy-forced continental shelf, and a mid-latitude ocean basin. The combination of moderate-order spatial approximations, enhanced conservation properties, and quasi-monotone advection produces both more robust and accurate, and less diffusive, solutions than those produced in earlier terrain-following ocean models. Together with advanced methods of data assimilation and novel observing system technologies, these capabilities constitute the necessary ingredients for multi-purpose regional ocean prediction systems. (c) 2007 Elsevier Inc. All rights reserved.

Hammer, PTC, Dorman LM, Hildebrand JA, Cornuelle BD.  1994.  Jasper Seamount Structure - Seafloor Seismic Refraction Tomography. Journal of Geophysical Research-Solid Earth. 99:6731-6752.   10.1029/93jb02170   AbstractWebsite

The velocity structure of Jasper Seamount was modeled using one- and three-dimensional inversions of P wave travel times. The results represent the first detailed seismic images of a submerged, intraplate volcano. Two seismic refraction experiments were completed on Jasper Seamount, incorporating ocean bottom seismometers and navigated seafloor shots. The P wave travel times were first used to compute a one-dimensional velocity profile which served as a starting model for a three-dimensional tomographic inversion. The seamount P velocities are significantly slower than those observed in typical oceanic crust at equivalent subbasement depths. This suggests that Jasper Seamount is constructed predominantly of extrusive lavas with high average porosity. The velocity models confirm morphological predictions: Jasper Seamount is a shield volcano with rift zone development. High seismic velocities were detected beneath the large radial ridges while low velocities characterize the shallow summit and flanks. Comparisons between P velocity models of Jasper Seamount and the island of Hawaii reveal that these two shield volcanoes are not structurally proportional. Jasper Seamount is far smaller than Hawaii, yet both volcanoes exhibit an outer extrusive layer of similar thickness. This suggests that seamount size influences the intrusive/extrusive proportions; density equilibrium between melt and country rock may explain this behavior.

Heimbach, P, Fukumori I, Hills CN, Ponte RM, Stammer D, Wunsch C, Campin JM, Cornuelle B, Fenty I, Forget G, Kohl A, Mazloff M, Menemenlis D, Nguyen AT, Piecuch C, Trossman D, Verdy A, Wang O, Zhang H.  2019.  Putting it all together: Adding value to the global ocean and climate observing systems with complete self-consistent ocean state and parameter estimates. Frontiers in Marine Science. 6   10.3389/fmars.2019.00055   AbstractWebsite

In 1999, the consortium on Estimating the Circulation and Climate of the Ocean (ECCO) set out to synthesize the hydrographic data collected by the World Ocean Circulation Experiment (WOCE) and the satellite sea surface height measurements into a complete and coherent description of the ocean, afforded by an ocean general circulation model. Twenty years later, the versatility of ECCO's estimation framework enables the production of global and regional ocean and sea-ice state estimates, that incorporate not only the initial suite of data and its successors, but nearly all data streams available today. New observations include measurements from Argo floats, marine mammal-based hydrography, satellite retrievals of ocean bottom pressure and sea surface salinity, as well as ice-tethered profiled data in polar regions. The framework also produces improved estimates of uncertain inputs, including initial conditions, surface atmospheric state variables, and mixing parameters. The freely available state estimates and related efforts are property-conserving, allowing closed budget calculations that are a requisite to detect, quantify, and understand the evolution of climate-relevant signals, as mandated by the Coupled Model Intercomparison Project Phase 6 (CMIP6) protocol. The solutions can be reproduced by users through provision of the underlying modeling and assimilation machinery. Regional efforts have spun off that offer increased spatial resolution to better resolve relevant processes. Emerging foci of ECCO are on a global sea level changes, in particular contributions from polar ice sheets, and the increased use of biogeochemical and ecosystem data to constrain global cycles of carbon, nitrogen and oxygen. Challenges in the coming decade include provision of uncertainties, informing observing system design, globally increased resolution, and moving toward a coupled Earth system estimation with consistent momentum, heat and freshwater fluxes between the ocean, atmosphere, cryosphere and land.

Hildebrand, JA, Dorman LM, Hammer PTC, Schreiner AE, Cornuelle BD.  1989.  Seismic tomography of jasper seamount. Geophysical Research Letters. 16:1355-1358.   10.1029/GL016i012p01355   AbstractWebsite

A vertical section of the interior structure of Jasper Seamount was modeled using a spectral tomographic inversion of P wave travel times. An array of ocean bottom seismographs (OBSs) deployed over the seamount detected the arrivals from a series of ocean bottom shots. A reference velocity model reveals that average compressional velocities within the seamount are similar to those found within Kilauea and are consistently slower than velocities at equivalent depths in typical oceanic crust. This suggests Jasper Seamount has a high average porosity. Perturbations from the reference model were imaged by tomographic inversion. A high velocity zone within the northwest flank of the seamount may result from dikes associated with a radial rift or from a shallow solidified magma reservoir. A low velocity summit may result from shallow, explosive eruptions. The tomographic model is consistent with the results of gravity, magnetic and dredging analyses.

Hoteit, I, Hoar T, Gopalakrishnan G, Collins N, Anderson J, Cornuelle B, Kohl A, Heimbach P.  2013.  A MITgcm/DART ensemble analysis and prediction system with application to the Gulf of Mexico. Dynamics of Atmospheres and Oceans. 63:1-23.   10.1016/j.dynatmoce.2013.03.002   AbstractWebsite

This paper describes the development of an advanced ensemble Kalman filter (EnKF)-based ocean data assimilation system for prediction of the evolution of the loop current in the Gulf of Mexico (GoM). The system integrates the Data Assimilation Research Testbed (DART) assimilation package with the Massachusetts Institute of Technology ocean general circulation model (MITgcm). The MITgcm/DART system supports the assimilation of a wide range of ocean observations and uses an ensemble approach to solve the nonlinear assimilation problems. The GoM prediction system was implemented with an eddy-resolving 1/10th degree configuration of the MITgcm. Assimilation experiments were performed over a 6-month period between May and October during a strong loop current event in 1999. The model was sequentially constrained with weekly satellite sea surface temperature and altimetry data. Experiments results suggest that the ensemble-based assimilation system shows a high predictive skill in the GoM, with estimated ensemble spread mainly concentrated around the front of the loop current. Further analysis of the system estimates demonstrates that the ensemble assimilation accurately reproduces the observed features without imposing any negative impact on the dynamical balance of the system. Results from sensitivity experiments with respect to the ensemble filter parameters are also presented and discussed. (C) 2013 Elsevier B.V. All rights reserved.

Hoteit, I, Cornuelle B, Thierry V, Stammer D.  2008.  Impact of resolution and optimized ECCO forcing on Simulations of the tropical pacific. Journal of Atmospheric and Oceanic Technology. 25:131-147.   10.1175/2007jtecho528.1   AbstractWebsite

The sensitivity of the dynamics of a tropical Pacific Massachusetts Institute of Technology (MIT) general circulation model (MITgcm) to the surface forcing fields and to the horizontal resolution is analyzed. During runs covering the period 1992-2002, two different sets of surface forcing boundary conditions are used, obtained 1) from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis project and 2) from the Estimating the Circulation and Climate of the Ocean (ECCO) assimilation consortium. The "ECCO forcing" is the "NCEP forcing" adjusted by a state estimation procedure using the MITgcm with a 1 degrees x 1 degrees global grid and the adjoint method assimilating a multivariate global ocean dataset. The skill of the model is evaluated against ocean observations available in situ and from satellites. The model domain is limited to the tropical Pacific, with open boundaries located along 26 degrees S, 26 degrees N, and in the Indonesian throughflow. To account for large-scale changes of the ocean circulation, the model is nested in the global time-varying ocean state provided by the ECCO consortium on a 1 grid. Increasing the spatial resolution to 1/3 degrees and using the ECCO forcing fields significantly improves many aspects of the circulation but produces overly strong currents in the western model domain. Increasing the resolution to 1/6 degrees does not yield further improvements of model results. Using the ECCO heat and freshwater fluxes in place of NCEP products leads to improved time-mean model skill (i.e., reduced biases) over most of the model domain, underlining the important role of adjusted heat and freshwater fluxes for improving model representations of the tropical Pacific. Combinations of ECCO and NCEP wind forcing fields can improve certain aspects of the model solutions, but neither ECCO nor NCEP winds show clear overall superiority.

Hoteit, I, Cornuelle B, Kim SY, Forget G, Kohl A, Terrill E.  2009.  Assessing 4D-VAR for dynamical mapping of coastal high-frequency radar in San Diego. Dynamics of Atmospheres and Oceans. 48:175-197.   10.1016/j.dynatmoce.2008.11.005   AbstractWebsite

The problem of dynamically mapping high-frequency (HF) radar radial velocity observations is investigated using a three-dimensional hydrodynamic model of the San Diego coastal region and an adjoint-based assimilation method. The HF radar provides near-real-time radial velocities from three sites covering the region offshore of San Diego Bay. The hydrodynamical model is the Massachusetts Institute of Technology general circulation model (MITgcm) with 1 km horizontal resolution and 40 vertical layers. The domain is centered on Point Loma, extending 117 km offshore and 120 km alongshore. The reference run (before adjustment) is initialized from a single profile of T and S and is forced with wind data from a single shore station and with zero heat and fresh water fluxes. The adjoint of the model is used to adjust initial temperature, salinity, and velocity, hourly temperature, salinity and horizontal velocities at the open boundaries, and hourly surface fluxes of momentum, heat and freshwater so that the model reproduces hourly HF radar radial velocity observations. Results from a small number of experiments suggest that the adjoint method can be successfully used over 10-day windows at coastal model resolution. It produces a dynamically consistent model run that fits HF radar data with errors near the specified uncertainties. In a test of the forecasting capability of the San Diego model after adjustment, the forecast skill was shown to exceed persistence for up to 20 h. (C) 2008 Elsevier B.V. All rights reserved.

Hoteit, I, Cornuelle B, Kohl A, Stammer D.  2005.  Treating strong adjoint sensitivities in tropical eddy-permitting variational data assimilation. Quarterly Journal of the Royal Meteorological Society. 131:3659-3682.: Royal Meteorological Society, 104 Oxford Rd. Reading Berks RG1 7LL UK   10.1256/qj.05.97   AbstractWebsite

A variational data assimilation system has been implemented for the tropical Pacific Ocean using an eddy-permitting regional implementation of the MITgcm. The adjoint assimilation system was developed by the Estimation of the Circulation and the Climate of the Ocean consortium, and has been extended to deal with open boundaries. This system is used to adjust the model to match observations in the tropical Pacific region using control parameters which include initial conditions, open boundaries and time-dependent surface fluxes. This paper focuses on problems related to strong adjoint sensitivities that may impede the model fit to the observations. A decomposition of the velocities at the open boundaries into barotropic and baroclinic modes is introduced to deal with very strong sensitivities of the model sea surface height to the barotropic component of the inflow. Increased viscosity and diffusivity terms are used in the adjoint model to reduce exponentially growing sensitivities in the backward run associated with nonlinearity of the forward model. Simplified experiments in which the model was constrained with Levitus temperature and salinity data, Reynolds sea surface temperature data and TOPEX/POSEIDON altimeter data were performed to demonstrate the controllability of this assimilation system and to study its sensitivity to the starting guesses for forcing and initial conditions.

Hoteit, I, Cornuelle B, Heimbach P.  2010.  An eddy-permitting, dynamically consistent adjoint-based assimilation system for the tropical Pacific: Hindcast experiments in 2000. Journal of Geophysical Research-Oceans. 115   10.1029/2009jc005437   AbstractWebsite

An eddy-permitting adjoint-based assimilation system has been implemented to estimate the state of the tropical Pacific Ocean. The system uses the Massachusetts Institute of Technology's general circulation model and its adjoint. The adjoint method is used to adjust the model to observations by controlling the initial temperature and salinity; temperature, salinity, and horizontal velocities at the open boundaries; and surface fluxes of momentum, heat, and freshwater. The model is constrained with most of the available data sets in the tropical Pacific, including Tropical Atmosphere and Ocean, ARGO, expendable bathythermograph, and satellite SST and sea surface height data, and climatologies. Results of hindcast experiments in 2000 suggest that the iterated adjoint-based descent is able to significantly improve the model consistency with the multivariate data sets, providing a dynamically consistent realization of the tropical Pacific circulation that generally matches the observations to within specified errors. The estimated model state is evaluated both by comparisons with observations and by checking the controls, the momentum balances, and the representation of small-scale features that were not well sampled by the observations used in the assimilation. As part of these checks, the estimated controls are smoothed and applied in independent model runs to check that small changes in the controls do not greatly change the model hindcast. This is a simple ensemble-based uncertainty analysis. In addition, the original and smoothed controls are applied to a version of the model with doubled horizontal resolution resulting in a broadly similar "downscaled'' hindcast, showing that the adjustments are not tuned to a single configuration (meaning resolution, topography, and parameter settings). The time-evolving model state and the adjusted controls should be useful for analysis or to supply the forcing, initial, and boundary conditions for runs of other models.

Hursky, P, Porter MB, Cornuelle BD, Hodgkiss WS, Kuperman WA.  2004.  Adjoint modeling for acoustic inversion. Journal of the Acoustical Society of America. 115:607-619.   10.1121/1.1636760   AbstractWebsite

The use of adjoint modeling for acoustic inversion is investigated. An adjoint model is derived from a linearized forward propagation model to propagate data-model misfit at the observation points back through the medium to the medium perturbations not being accounted for in the model. This adjoint model can be used to aid in inverting for these unaccounted medium perturbations. Adjoint methods are being applied to a variety of inversion problems, but have not drawn much attention from the underwater acoustic community. This paper presents an application of adjoint methods to acoustic inversion. Inversions are demonstrated in simulation for both range-independent and range-dependent sound speed profiles using the adjoint of a parabolic equation model. Sensitivity and error analyses are discussed showing how the adjoint model enables calculations to be performed in the space of observations, rather than the often much larger space of model parameters. Using an adjoint model enables directions of steepest descent in the model parameters (what we invert for) to be calculated using far fewer modeling runs than if a forward model only were used. (C) 2004 Acoustical Society of America.