Publications

Export 13 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C [D] E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
D
Di Lorenzo, E, Miller AJ, Neilson DJ, Cornuelle BD, Moisan JR.  2004.  Modelling observed California Current mesoscale eddies and the ecosystem response. International Journal of Remote Sensing. 25:1307-1312.   10.1080/01431160310001592229   AbstractWebsite

Satellite and in situ observations are used to test model dynamics for the California Current System (CCS). The model and data are combined to reconstruct the mesoscale ocean structure during a given three-week period. The resulting physical flow field is used to drive a 3D ecosystem model to interpret SeaWiFS and in situ chlorophyll-a (chl-a) variations. With this approach a more complete and consistent picture of the physical and ecosystem processes of the CCS is obtained, providing the basis for addressing fundamental questions about dynamics and predictability of the coastal ocean.

Di Lorenzo, E, Moore AM, Arango HG, Cornuelle BD, Miller AJ, Powell B, Chua BS, Bennett AF.  2007.  Weak and strong constraint data assimilation in the inverse Regional Ocean Modeling System (ROMS): Development and application for a baroclinic coastal upwelling system. Ocean Modelling. 16:160-187.   10.1016/j.ocemod.2006.08.002   AbstractWebsite

We describe the development and preliminary application of the inverse Regional Ocean Modeling System (ROMS), a four dimensional variational (4DVAR) data assimilation system for high-resolution basin-wide and coastal oceanic flows. Inverse ROMS makes use of the recently developed perturbation tangent linear (TL), representer tangent linear (RP) and adjoint (AD) models to implement an indirect representer-based generalized inverse modeling system. This modeling framework is modular. The TL, RP and AD models are used as stand-alone sub-models within the Inverse Ocean Modeling (IOM) system described in [Chua, B.S., Bennett, A.F., 2001. An inverse ocean modeling system. Ocean Modell. 35 137-165.]. The system allows the assimilation of a wide range of observation types and uses an iterative algorithm to solve nonlinear assimilation problems. The assimilation is performed either under the perfect model assumption (strong constraint) or by also allowing for errors in the model dynamics (weak constraints). For the weak constraint case the TL and RP models are modified to include additional forcing terms on the right hand side of the model equations. These terms are needed to account for errors in the model dynamics. Inverse ROMS is tested in a realistic 3D baroclinic upwelling system with complex bottom topography, characterized by strong mesoscale eddy variability. We assimilate synthetic data for upper ocean (0-450 m) temperatures and currents over a period of 10 days using both a high resolution and a spatially and temporally aliased sampling array. During the assimilation period the flow field undergoes substantial changes from the initial state. This allows the inverse solution to extract the dynamically active information from the synthetic observations and improve the trajectory of the model state beyond the assimilation window. Both the strong and weak constraint assimilation experiments show forecast skill greater than persistence and climatology during the 10-20 days after the last observation is assimilated. Further investigation in the functional form of the model error covariance and in the use of the representer tangent linear model may lead to improvement in the forecast skill. (c) 2006 Elsevier Ltd. All rights reserved.

Duda, TF, Pawlowicz RA, Lynch JF, Cornuelle BD.  1995.  Simulated Tomographic Reconstruction of Ocean Features Using Drifting Acoustic Receivers and a Navigated Source. Journal of the Acoustical Society of America. 98:2270-2279.   10.1121/1.413341   AbstractWebsite

Numerically simulated acoustic transmission from a single source of known position (for example, suspended from a ship) to receivers of partially known position (for example, sonobuoys dropped from the air) are used for tomographic mapping of ocean sound speed. The maps are evaluated for accuracy and utility. Grids of 16 receivers are employed, with sizes of 150, 300, and 700 km square. Ordinary statistical measures are used to evaluate the pattern similarity and thus the mapping capability of the, system. For an array of 300 km square, quantitative error in the maps grows with receiver position uncertainty. The large and small arrays show lesser mapping capability than the mid-size array. Mapping errors increase with receiver position uncertainty for uncertainties less than 1000-m rms, but uncertainties exceeding that have less systematic effect on the maps. Maps of rms error of the field do not provide a complete view of the utility of the acoustic network. Features of maps are surprisingly reproducible for different navigation error levels, and give comparable information about mesoscale structures despite great variations in those levels. (C) 1995 Acoustical Society of America.

Duda, TF, Flatte SM, Colosi JA, Cornuelle BD, Hildebrand JA, Hodgkiss WS, Worcester PF, Howe BM, Mercer JA, Spindel RC.  1992.  Measured Wave-Front Fluctuations in 1000-Km Pulse-Propagation in the Pacific-Ocean. Journal of the Acoustical Society of America. 92:939-955.   10.1121/1.403964   AbstractWebsite

A 1000-km acoustical transmission experiment has been carried out in the North Pacific, with Pulses broadcast between a moored broadband source (250-Hz center frequency) and a moored sparse vertical line of receivers. Two data records are reported: a period of 9 days at a pulse rate of one per hour, and a 21 -h period on the seventh day at six per hour. Many wave-front segments were observed at each hydrophone depth, and arrival times were tracked and studied as functions of time and depth. Arrivals within the final section of the pulse are not trackable in time or space at the chosen sampling rates, however. Broadband fluctuations, which are uncorrelated over 10-min sampling and 60-m vertical spacing, are observed with about 40 (ms)2 variance. The variance of all other fluctuations (denoted as low-frequency) is comparable or smaller than the broadband value; this low-frequency variance can be separated into two parts: a wave-front segment displacement (with vertical correlation length greater than 1 km) that varies substantially between rays with different ray identifiers, and a distortion (with vertical correlation length between 60 m and 1 km) of about 2 (ms)2 variance. The low-frequency variance may be explained as the effect of internal waves, including internal tides. The variance of the broadband fluctuations is reduced somewhat but not eliminated if only high-intensity peaks are selected; this selection does not affect the statistics of the low-frequency fluctuations.

Dushaw, BD, Worcester PF, Munk WH, Spindel RC, Mercer JA, Howe BM, Metzger K, Birdsall TG, Andrew RK, Dzieciuch MA, Cornuelle BD, Menemenlis D.  2009.  A decade of acoustic thermometry in the North Pacific Ocean. Journal of Geophysical Research-Oceans. 114   10.1029/2008jc005124   AbstractWebsite

Over the decade 1996-2006, acoustic sources located off central California (1996 1999) and north of Kauai (1997-1999, 2002-2006) transmitted to receivers distributed throughout the northeast and north central Pacific. The acoustic travel times are inherently spatially integrating, which suppresses mesoscale variability and provides a precise measure of ray-averaged temperature. Daily average travel times at 4-day intervals provide excellent temporal resolution of the large-scale thermal field. The interannual, seasonal, and shorter-period variability is large, with substantial changes sometimes occurring in only a few weeks. Linear trends estimated over the decade are small compared to the interannual variability and inconsistent from path to path, with some acoustic paths warming slightly and others cooling slightly. The measured travel times are compared with travel times derived from four independent estimates of the North Pacific: (1) climatology, as represented by the World Ocean Atlas 2005 (WOA05); (2) objective analysis of the upper-ocean temperature field derived from satellite altimetry and in situ profiles; (3) an analysis provided by the Estimating the Circulation and Climate of the Ocean project, as implemented at the Jet Propulsion Laboratory (JPL-ECCO); and (4) simulation results from a high-resolution configuration of the Parallel Ocean Program (POP) model. The acoustic data show that WOA05 is a better estimate of the time mean hydrography than either the JPL-ECCO or the POP estimates, both of which proved incapable of reproducing the observed acoustic arrival patterns. The comparisons of time series provide a stringent test of the large-scale temperature variability in the models. The differences are sometimes substantial, indicating that acoustic thermometry data can provide significant additional constraints for numerical ocean models.

Dushaw, BD, Worcester PF, Cornuelle BD, Howe BM.  1993.  Variability of Heat-Content in the Central North Pacific in Summer 1987 Determined from Long-Range Acoustic Transmissions. Journal of Physical Oceanography. 23:2650-2666.   10.1175/1520-0485(1993)023<2650:vohcit>2.0.co;2   AbstractWebsite

The evolution of the heat content in the central North Pacific Ocean during summer 1987 has been measured using acoustic transmissions between transceivers deployed in a triangle approximately 1000 km on a side. The acoustically determined heat contents of the source-receiver sections agree with heat contents computed from CTD and XBT data obtained during May and September 1987. The accuracy of acoustical measurements of range-averaged heat content is comparable to estimates from CTD and XBT data. Transmissions at four-day intervals allow the continuous observation of heat content and show that it varies on time scales of weeks or less. The magnitude of these variations is of the same order as that observed from XBT sections, which are only occasionally available. Ocean-atmosphere heat exchange from bulk formulas accounts for only about half of the observed heat content increase from May through September 1987, indicating that advective effects are important in the region. The excess heat change is calculated to be of order 50-150 W m(-2). The advective component of the near-surface heat budget is roughly in phase with the surface flux component.

Dushaw, B, Bold G, Chiu CS, Colosi J, Cornuelle B, Desaubies Y, Dzieciuch M, Forbes A, Gaillard F, Gavrilov A, Gould J, Howe BM, Lawrence M, Lynch J, Menemenlis D, Mercer J, Mikhalevsky PN, Munk W, Nakano I, Schott F, Send U, Spindel R, Terre T, Worcester P, Wunsch C.  2001.  Observing the ocean in the 2000's: A strategy for the role of acoustic tomography in ocean climate observation. Observing the Oceans in the 21st Century. ( Koblinsky C, Smith NR, Eds.).:391-418., Melbourne: Bureau of Meteorology Abstract
n/a
Dushaw, BD, Cornuelle BD, Worcester PF, Howe BM, Luther DS.  1995.  Barotropic and Baroclinic Tides in the Central North Pacific-Ocean Determined from Long-Range Reciprocal Acoustic Transmissions. Journal of Physical Oceanography. 25:631-647.   10.1175/1520-0485(1995)025<0631:babtit>2.0.co;2   AbstractWebsite

Travel times of reciprocal 1000-km range acoustic transmissions, determined from the 1987 Reciprocal Tomography Experiment, are used to study barotropic tidal currents and a large-scale, coherent baroclinic tide in the central North Pacific Ocean. The difference in reciprocal travel times determines the tidal currents, while the sum of reciprocal travel times determines the baroclinic tide displacement of isotachs (or equivalently, isotherms). The barotropic tidal current accounts for 90% of the observed differential travel time variance. The measured harmonic constants of the eight major tidal constituents of the barotropic tide and the constants determined from current meter measurements agree well with the empirical-numerical tidal models of Schwiderski and Cartwright et al. The amplitudes and phases of the first-mode baroclinic tide determined from sum travel times agree with those determined from moored thermistors and current meters. The baroclinic tidal signals are consistent with a large-scale, phase-locked internal tide, which apparently has propagated northward over 2000 km from the Hawaiian Ridge. The amplitude, phase, and polarization of the first-mode M(2) baroclinic tidal displacement and current are consistent with a northward propagating internal tide. The ratio of baroclinic energy to barotropic energy determined using the range-averaging acoustic transmissions is about 8%, while a ratio of 26% was determined from the point measurements. The large-scale, internal tide energy flux, presumed northward, is estimated to be about 180 W m(-1).

Dushaw, BD, Worcester PF, Cornuelle BD, Howe BM.  1993.  On Equations for the Speed of Sound in Seawater. Journal of the Acoustical Society of America. 93:255-275.   10.1121/1.405660   AbstractWebsite

Long-range acoustic transmissions made in conjunction with extensive environmental measurements and accurate mooring position determinations have been used to test the accuracy of equations used to calculate sound speed from pressure, temperature, and salinity. The sound-speed fields computed using the Del Grosso equation [ V. A. Del Grosso, J. Acoust. Soc. Am. 56, 1084-1091 (1974)] give predictions of acoustic arrival patterns which agree significantly better with the long-range measurements than those computed using the Chen and Millero equation [ C. Chen and F. J. Millero, J. Acoust. Soc. Am. 62, 1129-1135 (1977) The predicted ray travel times and travel time error have been calculated using objectively mapped sound-speed fields computed from conductivity, temperature, depth (CTD) and expendable bathythermograph (XBT) data. Using the measured and predicted ray travel times, a negligible correction to Del Grosso's equation of + 0.05 +/- 0.05 m/s at 4000-m depth is calculated.

Dushaw, BD, Egbert GD, Worcester PF, Cornuelle BD, Howe BM, Metzger K.  1997.  A TOPEX/POSEIDON global tidal model (TPXO.2) and barotropic tidal currents determined from long-range acoustic transmissions. Progress in Oceanography. 40:337-367.   10.1016/s0079-6611(98)00008-1   AbstractWebsite

Tidal currents derived from the TPXO.2 global tidal model of Egbert, Bennett, and Foreman are compared with those determined from long-range reciprocal acoustic transmissions. Amplitudes and phases of tidal constituents in the western North Atlantic are derived from acoustic data obtained in 1991-1992 using a pentagonal array of transceivers. Small, spatially coherent differences between the measured and modeled tidal harmonic constants mostly result from smoothing assumptions made in the model and errors caused in the model currents by complicated topography to the southwest of the acoustical array. Acoustically measured harmonic constants (amplitude, phase) of M-2 tidal vorticity (3-8 x 10(-9) s(-1), 210-310 degrees) agree with those derived from the TPXO.2 model (2-5 x 10(-9) s(-1), 250-300 degrees), whereas harmonic constants of about (1-2 x 10(-9) s(-1), 350-360 degrees) are theoretically expected from the equations of motion. Harmonic constants in the North Pacific Ocean are determined using acoustic data from a triangular transceiver array deployed in 1987. These constants are consistent with those given by the TPXO.2 tidal model within the uncertainties. Tidal current harmonic constants determined from current meters do not generally provide a critical test of tidal models. The tidal currents have been estimated to high accuracy using long-range reciprocal acoustic transmissions; these estimates will be useful constraints on future global tidal models. (C) 1998 Elsevier Science Ltd. All rights reserved.

Dushaw, BD, Worcester PF, Cornuelle BD, Howe BM.  1994.  Barotropic Currents and Vorticity in the Central North Pacific-Ocean During Summer 1987 Determined from Long-Range Reciprocal Acoustic Transmissions. Journal of Geophysical Research-Oceans. 99:3263-3272.   10.1029/93jc03335   AbstractWebsite

Large-scale depth-integrated currents and relative vorticity were measured in the central North Pacific Ocean during summer 1987 using long-range reciprocal acoustic transmissions between transceivers in a triangle approximately 1000 km on a side. Inverse techniques were used to estimate the depth-averaged (barotropic) current bihourly at 4-day intervals from differential travel times. Tidal constituent amplitudes and phases found from the acoustically determined currents agree with those found from current meters and with the tidal models of Schwiderski (1980) and Cartwright et al. (1992), providing confirmation that the tomographically derived barotropic currents are correct within the expected uncertainties. The estimated low-frequency, large-scale currents are compared with depth-averaged currents determined by point measurements using current meters and bottom-mounted electrometers. Meridional and zonal currents are calculated using the topographic Sverdrup balance with the Fleet Numerical Oceanography Center wind field. The measured time derivative of the areally averaged relative vorticity is shown to be insignificant to the Sverdrup balance. Currents and vorticity calculated using the Sverdrup balance are an order of magnitude smaller than the observations. The magnitude and variability of the large-scale currents and vorticity determined from the Semtner and Chervin (1988) eddy-resolving model of ocean circulation are similar to the direct measurements.

Dushaw, BD, Howe BM, Mercer JA, Spindel RC, Baggeroer AB, Menemenlis D, Wunsch C, Birdsall TG, Clark KMC, Colosi JA, Cornuelle BD, Dzieciuch M, Munk W.  1999.  Multimegameter-Range Acoustic Data Obtained by Bottom-Mounted Hydrophone Arrays for Measurement of Ocean Temperature. Ieee Journal of Oceanic Engineering. 24:202-214.   10.1109/48.757271   AbstractWebsite

Acoustic signals transmitted from the ATOC source on Pioneer Seamount off the coast of California have been received at various sites around the Pacific Basin since January 1996. We describe data obtained using bottom-mounted receivers, including U.S. Navy Sound Surveillance System arrays, at ranges up to 5 Mm from the Pioneer Seamount source. Stable identifiable ray arrivals are observed in several cases, but some receiving arrays are not well suited to detecting the direct ray arrivals. At 5-Mm range, travel-time variations at tidal frequencies (about 50 ms peak to peak) agree well with predicted values, providing verification of the acoustic measurements as well as the tidal model. On the longest and northernmost acoustic paths, the time series of resolved ray travel times show an annual cycle peak-to-peak variation of about 1 s and other fluctuations caused by natural oceanic variability. An annual cycle is not evident in travel times from shorter acoustic paths in the eastern Pacific, though only one realization of the annual cycle is available. The low-pass-filtered travel times are estimated to an accuracy of about 10 ms. This travel-time uncertainty corresponds to errors in range- and depth-averaged temperature of only a few millidegrees, while the annual peak-to-peak variation in temperature averaged horizontally over the acoustic path and vertically over the upper 1 km of ocean is up to 0.5 degree C.

Dzieciuch, MA, Cornuelle BD, Skarsoulis EK.  2013.  Structure and stability of wave-theoretic kernels in the ocean. Journal of the Acoustical Society of America. 134:3318-3331.   10.1121/1.4818846   AbstractWebsite

Wave-theoretic modeling can be applied to obtain travel-time sensitivity kernels (TSKs) representing the amount ray travel times are affected by sound-speed variations anywhere in the medium. This work explores the spatial frequency content of the TSK compared to expected ocean variability. It also examines the stability of the TSK in environments that produce strong sensitivity of ray paths to initial conditions. The conclusion is that the linear TSK model is an effective predictor of travel-time changes and that the rays perform nearly as well as the full-wave kernel. The TSK is examined in physical space and in wavenumber space, and it is found that this is the key to understanding how the travel time reacts to ocean perturbations. There are minimum vertical and horizontal length scales of ocean perturbations that are required for the travel time to be affected. The result is that the correspondence between true travel times and those calculated from the kernel is high for large-scale perturbations and somewhat less for the small scales. This demonstrates the validity of ray-based inversion of travel time observations for the cases under study. (C) 2013 Acoustical Society of America.