Adjoint Sensitivity of the Nino-3 Surface Temperature to Wind Forcing

Zhang, XB, Cornuelle B, Roemmich D.  2011.  Adjoint Sensitivity of the Nino-3 Surface Temperature to Wind Forcing. Journal of Climate. 24:4480-4493.

Date Published:



anomalies, assimilation, atmosphere ocean model, eastern equatorial pacific, el-nino, enso, general-circulation model, nonlinear optimal perturbation, oscillation, southern, tropical pacific


The evolution of sea surface temperature (SST) over the eastern equatorial Pacific plays a significant role in the intense tropical air-sea interaction there and is of central importance to the El Nino-Southern Oscillation (ENSO) phenomenon. Effects of atmospheric fields (especially wind stress) and ocean state on the eastern equatorial Pacific SST variations are investigated using the Massachusetts Institute of Technology general circulation model (MITgcm) and its adjoint model, which can calculate the sensitivities of a cost function (in this case the averaged 0-30-m temperature in the Nino-3 region during an ENSO event peak) to previous atmospheric forcing fields and ocean state going backward in time. The sensitivity of the Nino-3 surface temperature to monthly zonal wind stress in preceding months can be understood by invoking mixed layer heat balance, ocean dynamics, and especially linear equatorial wave dynamics. The maximum positive sensitivity of the Nino-3 surface temperature to local wind forcing usually happens similar to 1-2 months before the peak of the ENSO event and is hypothesized to be associated with the Ekman pumping mechanism. In model experiments, its magnitude is closely related to the subsurface vertical temperature gradient, exhibiting strong event-to-event differences with strong (weak) positive sensitivity during La Nina (strong El Nino) events. The adjoint sensitivity to remote wind forcing in the central and western equatorial Pacific is consistent with the standard hypothesis that the remote wind forcing affects the Nino-3 surface temperature indirectly by exciting equatorial Kelvin and Rossby waves and modulating thermocline depth in the Nino-3 region. The current adjoint sensitivity study is consistent with a previous regression-based sensitivity study derived from perturbation experiments. Finally, implication for ENSO monitoring and prediction is also discussed.