Publications

Export 8 results:
Sort by: Author Title Type [ Year  (Desc)]
2018
Amaya, DJ, Siler N, Xie SP, Miller AJ.  2018.  The interplay of internal and forced modes of Hadley Cell expansion: lessons from the global warming hiatus. Climate Dynamics. 51:305-319.   10.1007/s00382-017-3921-5   AbstractWebsite

The poleward branches of the Hadley Cells and the edge of the tropics show a robust poleward shift during the satellite era, leading to concerns over the possible encroachment of the globe's subtropical dry zones into currently temperate climates. The extent to which this trend is caused by anthropogenic forcing versus internal variability remains the subject of considerable debate. In this study, we use a Joint EOF method to identify two distinct modes of tropical width variability: (1) an anthropogenically-forced mode, which we identify using a 20-member simulation of the historical climate, and (2) an internal mode, which we identify using a 1000-year pre-industrial control simulation. The forced mode is found to be closely related to the top of the atmosphere radiative imbalance and exhibits a long-term trend since 1860, while the internal mode is essentially indistinguishable from the El Nio Southern Oscillation. Together these two modes explain an average of 70% of the interannual variability seen in model "edge indices" over the historical period. Since 1980, the superposition of forced and internal modes has resulted in a period of accelerated Hadley Cell expansion and decelerated global warming (i.e., the "hiatus"). A comparison of the change in these modes since 1980 indicates that by 2013 the signal has emerged above the noise of internal variability in the Southern Hemisphere, but not in the Northern Hemisphere, with the latter also exhibiting strong zonal asymmetry, particularly in the North Atlantic. Our results highlight the important interplay of internal and forced modes of tropical width change and improve our understanding of the interannual variability and long-term trend seen in observations.

Yi, DLL, Gan BL, Wu LX, Miller AJ.  2018.  The North Pacific Gyre Oscillation and Mechanisms of Its Decadal Variability in CMIP5 Models. Journal of Climate. 31:2487-2509.   10.1175/jcli-d-17-0344.1   AbstractWebsite

Based on the Simple Ocean Data Assimilation (SODA) product and 37 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) database, the North Pacific Gyre Oscillation (NPGO) and its decadal generation mechanisms are evaluated by studying the second leading modes of North Pacific sea surface height (SSH) and sea level pressure (SLP) as well as their dynamical connections. It is found that 17 out of 37 models can well simulate the spatial pattern and decadal time scales (10-30 yr) of the NPGO mode, which resembles the observation-based SODA results. Dynamical connections between the oceanic mode (NPGO) and the atmospheric mode [North Pacific Oscillation (NPO)] are strongly evident in both SODA and the 17 models. In particular, about 30%-40% of the variance of the NPGO variability, which generally exhibits a preferred time scale, can be explained by the NPO variability, which has no preferred time scale in most models. Two mechanisms of the decadal NPGO variability that had been proposed by previous studies are evaluated in SODA and the 17 models: 1) stochastic atmospheric forcing and oceanic spatial resonance and 2) low-frequency atmospheric teleconnections excited by the equatorial Pacific. Evaluation reveals that these two mechanisms are valid in SODA and two models (CNRM-CM5 and CNRM-CM5.2), whereas two models (CMCC-CM and CMCC-CMS) prefer the first mechanism and another two models (CMCC-CESM and IPSL-CM5B-LR) prefer the second mechanism. The other 11 models have no evident relations with the proposed two mechanisms, suggesting the need for a fundamental understanding of the decadal NPGO variability in the future.

2017
Miller, AJ, Collins M, Gualdi S, Jensen TG, Misra V, Pezzi LP, Pierce DW, Putrasahan D, Seo H, Tseng YH.  2017.  Coupled ocean-atmosphere modeling and predictions. Journal of Marine Research. 75:361-402. AbstractWebsite

Key aspects of the current state of the ability of global and regional climate models to represent dynamical processes and precipitation variations are summarized. Interannual, decadal, and global-warming timescales, wherein the influence of the oceans is relevant and the potential for predictability is highest, are emphasized. Oceanic influences on climate occur throughout the ocean and extend over land to affect many types of climate variations, including monsoons, the El Nino Southern Oscillation, decadal oscillations, and the response to greenhouse gas emissions. The fundamental ideas of coupling between the ocean-atmosphere-land system are explained for these modes in both global and regional contexts. Global coupled climate models are needed to represent and understand the complicated processes involved and allow us to make predictions over land and sea. Regional coupled climate models are needed to enhance our interpretation of the fine-scale response. The mechanisms by which large-scale, low-frequency variations can influence shorter timescale variations and drive regional-scale effects are also discussed. In this light of these processes, the prospects for practical climate predictability are also presented.

Gan, BL, Wu LX, Jia F, Li SJ, Cai WJ, Nakamura H, Alexander MA, Miller AJ.  2017.  On the response of the Aleutian Low to greenhouse warming. Journal of Climate. 30:3907-3925.   10.1175/jcli-d-15-0789.1   AbstractWebsite

Past and future changes in the Aleutian low are investigated by using observation-based sea level pressure (SLP) datasets and CMIP5 models. It is found that the Aleutian low intensity, measured by the North Pacific Index (NPI), has significantly strengthened during the twentieth century, with the observed centennial trend double the modeled counterpart for the multimodel average of historical simulations, suggesting compound signals of anthropogenic warming and natural variability. As climate warms under the strongest future warming scenario, the climatological-mean Aleutian low will continue to intensify and expand northward, as manifested in the significant decrease (-1.3 hPa) of the multimodel-averaged NPI, which is 1.6 times its unforced internal variability, and the increase in the central area of low pressure (SLP < 999.0 hPa), which expands about 7 times that in the twentieth century. A suite of idealized experiments further demonstrates that the deepening of the Aleutian low can be driven by an El Nino-like warming of the tropical Pacific sea surface temperature (SST), with a reduction in the climatological-mean zonal SST gradient, which overshadows the dampening effect of a weakened wintertime land-ocean thermal contrast on the Aleutian low change in a warmer climate. While the projected deepening of Aleutian low on multimodel average is robust, individual model portrayals vary primarily in magnitude. Intermodel difference in surface warming amplitude over the Asian continent, which is found to explain about 31% of the variance of the NPI changes across models, has a greater contribution than that in the spatial pattern of tropical Pacific SST warming (which explains about 23%) to model uncertainty in the projection of Aleutian low intensity.

2013
DeFlorio, MJ, Pierce DW, Cayan DR, Miller AJ.  2013.  Western US extreme precipitation events and their relation to ENSO and PDO in CCSM4. Journal of Climate. 26:4231-4243.   10.1175/jcli-d-12-00257.1   AbstractWebsite

Water resources and management over the western United States are heavily impacted by both local climate variability and the teleconnected responses of precipitation to the El Nino-Southern Oscillation (ENSO) and Pacific decadal oscillation (PDO). In this work, regional precipitation patterns over the western United States and linkages to ENSO and the PDO are analyzed using output from a Community Climate System Model version 4 (CCSM4) preindustrial control run and observations, with emphasis on extreme precipitation events. CCSM4 produces realistic zonal gradients in precipitation intensity and duration over the western United States, with higher values on the windward side of the Cascade Mountains and Sierra Nevada and lower values on the leeward. Compared to its predecessor CCSM3, CCSM4 shows an improved teleconnected signal of both ENSO and the PDO to large-scale circulation patterns over the Pacific-North America region and also to the spatial pattern and other aspects of western U.S. precipitation. The so-called drizzle problem persists in CCSM4 but is significantly improved compared to CCSM3. In particular, it is found that CCSM4 has substantially less precipitation duration bias than is present in CCSM3. Both the overall and extreme intensity of wintertime precipitation over the western United States show statistically significant linkages with ENSO and PDO in CCSM4. This analysis provides a basis for future studies using greenhouse gas (GHG)-forced CCSM4 runs.

2001
Auad, G, Miller AJ, Roads JO, Cayan D.  2001.  Pacific Ocean wind stress and surface heat flux anomalies from NCEP reanalysis and observations: Cross-statistics and ocean model responses. Journal of Geophysical Research-Oceans. 106:22249-22265.   10.1029/2000jc000264   AbstractWebsite

Wind stresses and surface heat fluxes over the Pacific Ocean from the National Center for Environmental Prediction (NCEP) reanalysis and the comprehensive Ocean-Atmosphere Data Set (COADS) (blended with FSU tropical wind stresses) are compared over a common time interval (1958-1997) in their statistics anal in the responses that they induce in sea surface temperature (SST) and heat storage when used to force an ocean model. Wind stress anomalies from the two data sets are well correlated in the midlatitude extratropics, especially in the highly sampled North Pacific. In the tropics and subtropics, low correlations were found between the two wind stress data sets. The amplitudes of the stress variations of the two data sets are similar in midlatitudes, but in the tropics NCEP wind stresses are weaker than the LOADS/FSU stresses, especially on interannual timescales. Surface heat flux anomalies from the two data sets are well correlated on interannual and shorter timescales in the North Pacific Ocean poleward of 20 degreesN, but they are poorly correlated elsewhere and on decadal timescales. In the extratropics the amplitudes of the heat flux variations of the two data sets are comparable, but in the tropics the NCEP heat fluxes are weaker than those of CORDS. Ocean model hindcasts driven by bath data sets are also compared: The midlatitude SST hindcasts were superior when using the NCEP flux anomalies while tropical SST hindcasts were equally skillful for the two hindcasts when considering all climatic timescales. The spatial and temporal sampling rates of the LOADS observations and their consequent impacts on constraining the NCEP reanalysis appear to be the main factors controlling the results found here.

1999
Schneider, N, Miller AJ, Alexander MA, Deser C.  1999.  Subduction of decadal North Pacific temperature anomalies: Observations and dynamics. Journal of Physical Oceanography. 29:1056-1070.   10.1175/1520-0485(1999)029<1056:sodnpt>2.0.co;2   AbstractWebsite

Observations of oceanic temperature in the upper 400 m reveal decadal signals that propagate in the thermocline along lines of constant potential vorticity from the ventilation region in the central North pacific to approximately 18 degrees N in the western Pacific. The propagation path and speed are well described by the geostrophic mean circulation and by a model of the ventilated thermocline. The approximate southward speed of the thermal signal of 7 mm s(-1) yields a transit time of approximately eight years. The thermal anomalies appear to be forced by perturbations of the mixed layer heat budget in the subduction region of the central North Pacific east of the date line, A warm pulse was generated in the central North Pacific by a series of mild winters from 1973 to 1976 and reached 18 degrees N around 1982. After 1978 a succession of colder winters initiated a sold anomaly in the central North Pacific that propagated along a similar path and with a similar speed as the warm anomaly, then arrived in the western tropical Pacific at 18 degrees N around 1991. Tropical Ekman pumping, rather than further propagation of the midlatitude signal, caused the subsequent spread into the equatorial western Pacific and an increase in amplitude. Historical data show that anomalous sea surface temperature in the equatorial central Pacific is correlated with tropical Ekman pumping while the correlation with thermal anomalies in the North Pacific eight years earlier is not significant. These results indicate no significant coupling in the Pacific of Northern Hemisphere midlatitudes and the equatorial region via advection of thermal anomalies along the oceanic thermocline.

1998
Miller, AJ, Cayan DR, White WB.  1998.  A westward-intensified decadal change in the North Pacific thermocline and gyre-scale circulation. Journal of Climate. 11:3112-3127.   10.1175/1520-0442(1998)011<3112:awidci>2.0.co;2   AbstractWebsite

From the early 1970s to the mid-1980s, the main thermocline of the subarctic gyre of the North Pacific Ocean shoaled with temperatures at 200-400-m depth cooling by 1 degrees-4 degrees C over the region. The gyre-scale structure of the shoaling is quasi-stationary and intensified in the western part of the basin north of 30 degrees N, suggesting concurrent changes in gyre-scale transport. A similar quasi-stationary cooling in the subtropical gyre south of 25 degrees N is also observed but lags the subpolar change by several years. To explore the physics of these changes, the authors examine an ocean model forced by observed wind stress and heat flux anomalies from 1970-88 in which they find similar changes in gyre-scale thermocline structure. The model current fields reveal that the North Pacific subpolar and subtropical gyres strengthened by roughly 10% from the 1970s to the 1980s. The bulk of the eastward Row of the model Kuroshio-Oyashio Extension returned westward via the subpolar gyre circuit, while the subtropical gyre return flow along 20 degrees N lags the subpolar changes by several years. The authors demonstrate that the model thermocline cooling and increased transport occurred in response to decadal-scale changes in basin-scale wind stress curl with the quasi-stationary oceanic response being in a time-dependent quasi-Sverdrup balance over much of the basin east of the date line. This wind stress curl driven response is quasi-stationary but occurs in conjunction with a propagating temperature anomaly associated with subduction in the central North Pacific that links the subpolar and subtropical gyre stationary changes and gives the appearance of circumgyre propagation. Different physics evidently controls the decadal subsurface temperature signal in different parts of the extratropical North Pacific.