Export 6 results:
Sort by: Author Title Type [ Year  (Desc)]
Amaya, DJ, Siler N, Xie SP, Miller AJ.  2018.  The interplay of internal and forced modes of Hadley Cell expansion: lessons from the global warming hiatus. Climate Dynamics. 51:305-319.   10.1007/s00382-017-3921-5   AbstractWebsite

The poleward branches of the Hadley Cells and the edge of the tropics show a robust poleward shift during the satellite era, leading to concerns over the possible encroachment of the globe's subtropical dry zones into currently temperate climates. The extent to which this trend is caused by anthropogenic forcing versus internal variability remains the subject of considerable debate. In this study, we use a Joint EOF method to identify two distinct modes of tropical width variability: (1) an anthropogenically-forced mode, which we identify using a 20-member simulation of the historical climate, and (2) an internal mode, which we identify using a 1000-year pre-industrial control simulation. The forced mode is found to be closely related to the top of the atmosphere radiative imbalance and exhibits a long-term trend since 1860, while the internal mode is essentially indistinguishable from the El Nio Southern Oscillation. Together these two modes explain an average of 70% of the interannual variability seen in model "edge indices" over the historical period. Since 1980, the superposition of forced and internal modes has resulted in a period of accelerated Hadley Cell expansion and decelerated global warming (i.e., the "hiatus"). A comparison of the change in these modes since 1980 indicates that by 2013 the signal has emerged above the noise of internal variability in the Southern Hemisphere, but not in the Northern Hemisphere, with the latter also exhibiting strong zonal asymmetry, particularly in the North Atlantic. Our results highlight the important interplay of internal and forced modes of tropical width change and improve our understanding of the interannual variability and long-term trend seen in observations.

Miller, AJ, Song H, Subramanian AC.  2015.  The physical oceanographic environment during the CCE-LTER Years: Changes in climate and concepts. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 112:6-17.   10.1016/j.dsr2.2014.01.003   AbstractWebsite

The California Current System (CCS) has been studied by the California Cooperative Oceanic Fisheries Investigations program for many decades. Since 2004, the Southern California Bight (SCB) and the oceanic region offshore has also been the site for the California Current Ecosystem (CCE) Long-Term Ecological Research (LTER) program, which has established long-term observational time series and executed several Process Cruises to better understand physical biological variations, fluxes and interactions. Since the inception of the CCE-LTER, many new ideas have emerged about what physical processes are the key controls on CCS dynamics. These new perspectives include obtaining a better understanding of what climate patterns exert influences on CCS physical variations and what physical controls are most important in driving CCE ecological changes. Physical oceanographic and climatological conditions in the CCS varied widely since the inception of the CCE-LTER observational time series, including unusual climate events and persistently anomalous states. Although the CCE-LTER project commenced in 2004 in the midst of normal ocean conditions near the climatological means, over the following decade, El Nino/Southern Oscillation conditions flickered weakly from warm to cold, with the Pacific Decadal Oscillation (PDO) generally tracking that behavior, while the North Pacific Gyre Oscillation (NPGO) evolved to persistent and strong positive conditions after 2007, indicative of enhanced upwelling from 2007 to 2012. Together the combined impact of the negative PDO state (La Nina conditions) and positive NPGO state (increased upwelling conditions) yielded remarkably persistent cool conditions in the CCS from late 2007 to early 2009 and from mid-2010 through 2012. The broad-scale climate variations that occurred over the North Pacific and CCS during this time period are discussed here to provide physical context for the CCE-LTER time series observations and the CCE-LTER Process Cruises. Data assimilation fits, using the Regional Ocean Modeling System four-dimensional data assimilation framework, were successfully executed for the 1-month time period surrounding each of the Process Cruises. The fits provide additional information about how the physical flows evolve during the course of the multi-week Process Cruises. Relating these physical states to the numerous biological measurements gathered by the CCE-LTER time series observations and during the Process Cruises will yield vital long-term perspective of how changing climate conditions control the ocean ecosystem in this region and information on how this important ecosystem can be expected to evolve over the coming decades. (C) 2014 Elsevier Ltd. All rights reserved.

DeFlorio, MJ, Pierce DW, Cayan DR, Miller AJ.  2013.  Western US extreme precipitation events and their relation to ENSO and PDO in CCSM4. Journal of Climate. 26:4231-4243.   10.1175/jcli-d-12-00257.1   AbstractWebsite

Water resources and management over the western United States are heavily impacted by both local climate variability and the teleconnected responses of precipitation to the El Nino-Southern Oscillation (ENSO) and Pacific decadal oscillation (PDO). In this work, regional precipitation patterns over the western United States and linkages to ENSO and the PDO are analyzed using output from a Community Climate System Model version 4 (CCSM4) preindustrial control run and observations, with emphasis on extreme precipitation events. CCSM4 produces realistic zonal gradients in precipitation intensity and duration over the western United States, with higher values on the windward side of the Cascade Mountains and Sierra Nevada and lower values on the leeward. Compared to its predecessor CCSM3, CCSM4 shows an improved teleconnected signal of both ENSO and the PDO to large-scale circulation patterns over the Pacific-North America region and also to the spatial pattern and other aspects of western U.S. precipitation. The so-called drizzle problem persists in CCSM4 but is significantly improved compared to CCSM3. In particular, it is found that CCSM4 has substantially less precipitation duration bias than is present in CCSM3. Both the overall and extreme intensity of wintertime precipitation over the western United States show statistically significant linkages with ENSO and PDO in CCSM4. This analysis provides a basis for future studies using greenhouse gas (GHG)-forced CCSM4 runs.

Moon, JH, Song YT, Bromirski PD, Miller AJ.  2013.  Multidecadal regional sea level shifts in the Pacific over 1958-2008. Journal of Geophysical Research-Oceans. 118:7024-7035.   10.1002/2013jc009297   AbstractWebsite

Altimeter data have significantly improved our understanding of regional sea level variability and trends, but their relatively short records do not allow either evaluation of the ocean state prior to 1993 or multidecadal low-frequency signals in the ocean. Here we characterize and quantify the multidecadal regional sea level rise (rSLR) and related ocean heat content in the Pacific from a non-Boussinesq ocean circulation model in comparison with data sets from altimeters, two sea level reconstructions, and in situ ocean profiles from 1958 to 2008. We show that the rSLR trends have undergone two shifts, during the mid-1970s and in the early 1990s, with an east-west dipole pattern in the tropical Pacific. In each of these phases, rSLR accelerated on one side of the Pacific, but decelerated on the other side. The multidecadal sea level shifts can be explained by the dynamical (steric) upper-ocean responses to the surface wind forcing associated with the Pacific Decadal Oscillation (PDO), with negligible contributions from internal (depth-integrated) ocean mass changes. Additional model experimentation further confirms that the Pacific wind stress trend over the recent two decades has played an important role in strengthening the rSLR in the western Pacific while suppressing the rSLR in the eastern Pacific. The climate-forced large-scale rSLR variability is likely to impose a long-term and uneven impact on coastal communities.

Macias, D, Landry MR, Gershunov A, Miller AJ, Franks PJS.  2012.  Climatic control of upwelling variability along the western North American coast. Plos One. 7   10.1371/journal.pone.0030436   AbstractWebsite

The high biological production of the California Current System (CCS) results from the seasonal development of equatorward alongshore winds that drive coastal upwelling. While several climatic fluctuation patterns influence the dynamics and biological productivity of the CCS, including the El Nino-Southern Oscillation (ENSO), the Pacific Decadal Oscillation index (PDO) and the North Pacific Gyre Oscillation (NPGO), the mechanisms of interaction between climatic oscillations and the CCS upwelling dynamics have remained obscure. Here, we use Singular Spectral Analysis (SSA) to reveal, for the first time, low-frequency concordance between the time series of climatic indices and upwelling intensity along the coast of western North America. Based on energy distributions in annual, semiannual and low-frequency signals, we can divide the coast into three distinct regions. While the annual upwelling signal dominates the energy spectrum elsewhere, low-frequency variability is maximal in the regions south of 33 degrees N. Non-structured variability associated with storms and turbulent mixing is enhanced at northerly locations. We found that the low-frequency signal is significantly correlated with different climatic indices such as PDO, NPGO and ENSO with the correlation patterns being latitude-dependent. We also analyzed the correlations between this upwelling variability and sea surface temperature (SST) and sea level pressure (SLP) throughout the North Pacific to visualize and interpret the large-scale teleconnection dynamics in the atmosphere that drive the low-frequency coastal winds. These results provide new insights into the underlying mechanisms connecting climatic patterns with upwelling dynamics, which could enhance our prediction and forecast capabilities of the effects of future oceanographic and climatic variability in the CCS.

Overland, JE, Alheit J, Bakun A, Hurrell JW, Mackas DL, Miller AJ.  2010.  Climate controls on marine ecosystems and fish populations. Journal of Marine Systems. 79:305-315.   10.1016/j.jmarsys.2008.12.009   AbstractWebsite

This paper discusses large-scale climate variability for several marine ecosystems and suggests types of ecosystem responses to climate change. Our analysis of observations and model results for the Pacific and Atlantic Oceans concludes that most climate variability is accounted for by the combination of intermittent 1-2 year duration events, e.g. the cumulative effect of monthly weather anomalies or the more organized El Nino/La Nina, plus broad-band "red noise" intrinsic variability operating at decadal and longer timescales. While ocean processes such as heat storage and lags due to ocean circulation provide some multi-year memory to the climate system, basic understanding of the mechanisms resulting in observed large decadal variability is lacking and forces the adoption of a "stochastic or red noise" conceptual model of low frequency variability at the present time. Thus we conclude that decadal events with rapid shifts and major departures from climatic means will occur, but their timing cannot be forecast. The responses to climate by biological systems are diverse in character because intervening processes introduce a variety of amplifications, time lags, feedbacks, and non-linearities. Decadal ecosystem variability can involve a variety of climate to ecosystem transfer functions. These can be expected to convert red noise of the physical system to redder (lower frequency) noise of the biological response, but can also convert climatic red noise to more abrupt and discontinuous biological shifts, transient climatic disturbance to prolonged ecosystem recovery, and perhaps transient disturbance to sustained ecosystem regimes. All of these ecosystem response characteristics are likely to be active for at least some locations and time periods, leading to a mix of slow fluctuations, prolonged trends, and step-like changes in ecosystems and fish populations in response to climate change. Climate variables such as temperatures and winds can have strong teleconnections (large spatial covariability) within individual ocean basins, but between-basin teleconnections, and potential climate-driven biological synchrony over several decades, are usually much weaker and a highly intermittent function of the conditions prevailing at the time within the adjoining basins. As noted in the recent IPCC 4th Assessment Report, a warming trend of ocean surface layers and loss of regional sea ice is likely before 2030, due to addition of greenhouse gases. Combined with large continuing natural climate variability, this will stress ecosystems in ways that they have not encountered for at least 100s of years. Published by Elsevier B.V.