Publications

Export 2 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C [D] E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
D
Detrick, RS, Harding AJ, Kent GM, Orcutt JA, Mutter JC, Buhl P.  1993.  Seismic Structure of the Southern East Pacific Rise. Science. 259:499-503.   10.1126/science.259.5094.499   AbstractWebsite

Seismic data from the ultrafast-spreading (150 to 162 millimeters per year) southern East Pacific Rise show that the rise axis is underlain by a thin (less than 200 meters thick) extrusive volcanic layer (seismic layer 2A) that thickens rapidly off axis. Also beneath the rise axis is a narrow (less than 1 kilometer wide) melt sill that is in some places less than 1000 meters below the sea floor. The small dimensions of this molten body indicate that magma chamber size does not depend strongly on spreading rate as predicted by many ridge-crest thermal models. However, the shallow depth of this body is consistent with an inverse correlation between magma chamber depth and spreading rate. These observations indicate that the paradigm of ridge crest magma chambers as small, sill-like, mid-crustal bodies is applicable to a wide range of intermediate- and fast-spreading ridges.

Dingler, J, Kent G, Driscoll N, Babcock J, Harding A, Seitz G, Karlin B, Goldman C.  2009.  A high-resolution seismic CHIRP investigation of active normal faulting across Lake Tahoe Basin, California-Nevada. Geological Society of America Bulletin. 121:1089-1107.   10.1130/b26244.1   AbstractWebsite

We measured extension rates across Lake Tahoe Basin for the last 60 ka. based on measured displacement of offset marker surfaces across three active faults beneath Lake Tahoe. Seismic chirp imaging with submeter accuracy, together with detailed multibeam and light detection and ranging (LIDAR)-derived bathymetry, was used to measure fault offset, thickness of earthquake-derived colluvial wedges, depth of wave-cut paleoterraces, and other geomorphic features. An analysis of these features provides refined estimates of extension rates and new information on Holocene faulting, and places Tahoe Basin deformation into the larger context of Walker Lane and Basin and Range tectonics. Measured offset marker surfaces include submerged wave-cut paleoterraces of Tioga age (19.2 +/- 1.8 ka), McKinney Bay slide deposits (ca. 60 ka), and a winnowed boulder surface of Tahoe age (ca. 62 ka). Estimated vertical offset rates across submerged geomorphic surfaces are 0.43-0.81 mm/a for the West Tahoe fault, 0.35-0.60 mm/a for the Stateline-North Tahoe fault, and 0.12-0.30 mm/a for the Incline Village fault. These offset rates indicate a combined east-west extension rate across Lake Tahoe Basin, assuming 60 degrees fault dips, of 0.52-0.99 mm/a. This estimate, when combined with the Genoa fault-slip rate, yields an extension rate consistent with the magnitude of the extension deficit across Carson Valley and Lake Tahoe Basin derived from global positioning system (GPS) velocities. The Stateline-North Tahoe, Incline Village, and West Tahoe faults all show evidence for individual Holocene earthquake events as recorded by either colluvial wedge deposits or offset fan-delta stratigraphy.